Suppr超能文献

缺钠大鼠孤束核中的味觉反应。

Taste responses in the nucleus tractus solitarius of sodium-deprived rats.

作者信息

Jacobs K M, Mark G P, Scott T R

机构信息

Department of Psychology, University of Delaware, Newark 19716.

出版信息

J Physiol. 1988 Dec;406:393-410. doi: 10.1113/jphysiol.1988.sp017387.

Abstract
  1. Maintenance of sodium balance is crucial to mammals and is expressed in the innate salt appetite. With depletion, sodium preference is exaggerated, hypertonic solutions accepted and salt balance restored. This compensatory behaviour is thought to result from a centrally induced change in taste responsiveness. This proposal was tested by recording taste activity from ninety-four single neurones in the nucleus tractus solitarius of sodium-replete (N = 44) and of deprived (N = 50) rats. Twelve Wistar rats were given a nominally sodium-free diet for 10-13 days, and the resulting sodium depletion confirmed by flame photometry of their urine. Nine rats provided control data. Taste stimuli included five concentrations of NaCl (0.003-0.3 M) plus eight other salts, acids, sugars and alkaloids. 2. Taste responsiveness was generally reduced in sodium-depleted rats. Spontaneous activity was 33% lower while responses to sodium salts lagged by a mean of 30%, to acids by 25% and to bitter salts and quinine by 17%. Mean activity to sugars was 60% higher in the deprived group. 3. Activity in sugar- and salt-profile neurones was most affected. In deprived animals responses to sodium salts were lower by 80% among salt-profile cells while among sugar-profile neurones activity to these stimuli was nearly 10 times greater than in controls. These changes in activity resulted in a dramatic shift in the participation of sodium- and sugar-profile cells in the afferent signal for NaCl. In replete animals 60% of sodium-induced activity was transmitted through salt-profile cells while only 1% occurred in sugar-profile neurones. In deprived subjects this situation was nearly reversed as 7% of the total NaCl response was conveyed through salt-profile cells while the contribution of neurones with sugar-profiles rose to 46%. 4. Multidimensional stimulus spaces based on average activity in each of four identifiable neurone subgroups demonstrated a shift in the affiliation of sodium salts away from bitter and acid stimuli and towards sugars. 5. These results confirm earlier findings from the chorda tympani that sodium deprivation suppresses activity evoked by sodium salts. However the application of more recent analytical procedures permits quite a different interpretation of this finding. The overall decrease is merely the net effect of a shift in the major responsibility for encoding sodium from salt-profile neurones to those whose primary sensitivity is to sugars.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 维持钠平衡对哺乳动物至关重要,并通过天生的盐食欲表现出来。当钠缺乏时,对钠的偏好会增强,会接受高渗溶液,从而恢复盐平衡。这种代偿行为被认为是由中枢诱导的味觉反应性变化引起的。通过记录94个单神经元的味觉活动对这一假设进行了测试,这些神经元取自钠充足(N = 44)和钠缺乏(N = 50)大鼠的孤束核。12只Wistar大鼠被给予名义上无钠的饮食10 - 13天,通过对其尿液进行火焰光度法测定来确认由此导致的钠缺乏。9只大鼠提供对照数据。味觉刺激包括5种浓度的氯化钠(0.003 - 0.3 M)以及8种其他盐、酸、糖和生物碱。2. 钠缺乏的大鼠味觉反应性普遍降低。自发活动降低了33%,而对钠盐的反应平均滞后30%,对酸的反应滞后25%,对苦盐和奎宁的反应滞后17%。缺乏组对糖的平均反应活性高出60%。3. 对糖和盐特征神经元的活动影响最大。在缺乏钠的动物中,盐特征细胞对钠盐的反应降低了80%,而在糖特征神经元中,对这些刺激的活动比对照组高出近10倍。这些活动变化导致钠和糖特征细胞参与氯化钠传入信号的情况发生了巨大转变。在钠充足的动物中,60%的钠诱导活动通过盐特征细胞传递,而在糖特征神经元中仅占1%。在缺乏钠的动物中,这种情况几乎相反,氯化钠总反应的7%通过盐特征细胞传递,而糖特征神经元的贡献上升到46%。4. 基于四个可识别神经元亚组中每个亚组的平均活动构建的多维刺激空间表明,钠盐的归属从苦味和酸味刺激转向了甜味刺激。5. 这些结果证实了早期来自鼓索神经的发现,即钠缺乏会抑制钠盐诱发的活动。然而,应用更新的分析程序对这一发现有截然不同的解释。总体下降仅仅是编码钠的主要责任从盐特征神经元转移到主要对糖敏感的神经元的净效应。(摘要截选至400字)

相似文献

1
Taste responses in the nucleus tractus solitarius of sodium-deprived rats.
J Physiol. 1988 Dec;406:393-410. doi: 10.1113/jphysiol.1988.sp017387.
2
The effect of amiloride on taste-evoked activity in the nucleus tractus solitarius of the rat.
Brain Res. 1991 Jun 7;550(2):247-56. doi: 10.1016/0006-8993(91)91325-u.
3
Taste responses in the nucleus tractus solitarius of the chronic decerebrate rat.
Brain Res. 1988 Mar 8;443(1-2):137-48. doi: 10.1016/0006-8993(88)91606-x.
5
Acute sodium deficiency reduces gustatory responsiveness to NaCl in the parabrachial nucleus of rats.
Neurosci Lett. 1997 Oct 24;236(1):33-6. doi: 10.1016/s0304-3940(97)00745-3.
6
Coding channels in the taste system of the rat.
Science. 1990 Sep 28;249(4976):1585-7. doi: 10.1126/science.2171145.
7
Development of taste responses in rat nucleus of solitary tract.
J Neurophysiol. 1983 Oct;50(4):879-95. doi: 10.1152/jn.1983.50.4.879.
8
Activity in rat nucleus tractus solitarius after recovery from sodium deprivation.
Physiol Behav. 1996 Aug;60(2):501-6. doi: 10.1016/s0031-9384(96)80025-4.
9
Gustatory responses of neurons in the nucleus of the solitary tract of behaving rats.
J Neurophysiol. 1991 Oct;66(4):1232-48. doi: 10.1152/jn.1991.66.4.1232.
10
Taste responses of cortical neurons in freely ingesting rats.
J Neurophysiol. 1989 Jun;61(6):1244-58. doi: 10.1152/jn.1989.61.6.1244.

引用本文的文献

2
Sodium Intake and Disease: Another Relationship to Consider.
Nutrients. 2023 Jan 19;15(3):535. doi: 10.3390/nu15030535.
3
Neural Coding of Food Is a Multisensory, Sensorimotor Function.
Nutrients. 2021 Jan 27;13(2):398. doi: 10.3390/nu13020398.
4
The Functional and Neurobiological Properties of Bad Taste.
Physiol Rev. 2019 Jan 1;99(1):605-663. doi: 10.1152/physrev.00044.2017.
5
Sodium Taste During Sodium Appetite.
Chem Senses. 2017 Feb;42(2):91-92. doi: 10.1093/chemse/bjw112. Epub 2016 Dec 5.
6
Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai.
Physiol Behav. 2017 Sep 1;178:21-27. doi: 10.1016/j.physbeh.2016.11.021. Epub 2016 Nov 19.
7
The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats.
Chem Senses. 2017 Feb;42(2):93-103. doi: 10.1093/chemse/bjw100. Epub 2016 Sep 22.
8
The biopsychology of salt hunger and sodium deficiency.
Pflugers Arch. 2015 Mar;467(3):445-56. doi: 10.1007/s00424-014-1676-y. Epub 2015 Jan 10.
10
Water as an independent taste modality.
Front Neurosci. 2010 Oct 15;4:175. doi: 10.3389/fnins.2010.00175. eCollection 2010.

本文引用的文献

1
Gustatory nerve discharges in normal and adrenalectomized rats.
J Comp Physiol Psychol. 1950 Aug;43(4):320-4. doi: 10.1037/h0059248.
2
REGULATION OF SODIUM CHLORIDE INTAKE BY RATS.
Am J Physiol. 1965 Aug;209:287-92. doi: 10.1152/ajplegacy.1965.209.2.287.
3
SODIUM APPETITE ELICTED BY SUBCUTANEOUS FORMALIN: MECHANISM OF ACTION.
J Comp Physiol Psychol. 1965 Jun;59:335-9. doi: 10.1037/h0022026.
5
GUSTATORY NERVE DISCHARGE IN NORMAL AND SODIUM-DEFICIENT RATS.
J Comp Physiol Psychol. 1963 Dec;56:1007-11. doi: 10.1037/h0044428.
6
Taste preferences for sodium salts by adrenalectomized rats.
J Comp Physiol Psychol. 1962 Dec;55:1124-9. doi: 10.1037/h0041348.
9
The control of salt preference in the adrenalectomized rat.
J Comp Physiol Psychol. 1955 Jun;48(3):167-72. doi: 10.1037/h0045626.
10
The effect of adrenalectomy upon the NaC1 taste threshold in rat.
J Comp Physiol Psychol. 1952 May;45(4):377-80. doi: 10.1037/h0056378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验