Sukoff Rizzo Stacey J, Masters Andi, Onos Kristen D, Quinney Sara, Sasner Michael, Oblak Adrian, Lamb Bruce T, Territo Paul R
University of Pittsburgh School of Medicine - Aging Institute Pittsburgh Pennsylvania USA.
Indiana University School of Medicine Stark Neurosciences Research Institute Indianapolis Indiana USA.
Alzheimers Dement (N Y). 2020 Jun 14;6(1):e12038. doi: 10.1002/trc2.12038. eCollection 2020.
Preclinical testing in animal models is a critical component of the drug discovery and development process. While hundreds of interventions have demonstrated preclinical efficacy for ameliorating cognitive impairments in animal models, none have confirmed efficacy in Alzheimer's disease (AD) clinical trials. Critically this lack of translation to the clinic points in part to issues with the animal models, the preclinical assays used, and lack of scientific rigor and reproducibility during execution. In an effort to improve this translation, the Preclinical Testing Core (PTC) of the Model Organism Development and Evaluation for Late-onset AD (MODEL-AD) consortium has established a rigorous screening strategy with go/no-go decision points that permits unbiased assessments of therapeutic agents.
An initial screen evaluates drug stability, formulation, and pharmacokinetics (PK) to confirm appreciable brain exposure in the disease model at the pathologically relevant ages, followed by pharmacodynamics (PD) and predictive PK/PD modeling to inform the dose regimen for long-term studies. The secondary screen evaluates target engagement and disease modifying activity using non-invasive positron emission tomography/magnetic resonance imaging (PET/MRI). Provided the compound meets its "go" criteria for these endpoints, evaluation for efficacy on behavioral endpoints are conducted.
Validation of this pipeline using tool compounds revealed the importance of critical quality control (QC) steps that researchers need to be aware of when executing preclinical studies. These include confirmation of the active pharmaceutical ingredient and at the precise concentration expected; and an experimental design that is well powered and in line with the Animal Research Reporting of In vivo Experiments (ARRIVE) guidelines.
Taken together our experience executing a rigorous screening strategy with QC checkpoints provides insight to the challenges of conducting translational studies in animal models. The PTC pipeline is a National Institute on Aging (NIA)-supported resource accessible to the research community for investigators to nominate compounds for testing (https://stopadportal.synapse.org/), and these resources will ultimately enable better translational studies to be conducted.
在动物模型中进行临床前测试是药物发现和开发过程的关键组成部分。虽然数百种干预措施已在动物模型中显示出改善认知障碍的临床前疗效,但在阿尔茨海默病(AD)临床试验中均未证实其疗效。至关重要的是,这种无法转化至临床的情况部分归因于动物模型、所使用的临床前检测方法的问题,以及执行过程中缺乏科学严谨性和可重复性。为了改善这种转化情况,迟发性AD模型生物开发与评估(MODEL-AD)联盟的临床前测试核心(PTC)制定了一项严格的筛选策略,设有通过/不通过决策点,以允许对治疗药物进行无偏评估。
初始筛选评估药物稳定性、制剂和药代动力学(PK),以确认在病理相关年龄的疾病模型中有可观的脑暴露,随后进行药效学(PD)和预测性PK/PD建模,为长期研究确定给药方案。二次筛选使用非侵入性正电子发射断层扫描/磁共振成像(PET/MRI)评估靶点结合和疾病修饰活性。如果化合物满足这些终点的“通过”标准,则对行为终点的疗效进行评估。
使用工具化合物对该流程进行验证揭示了关键质量控制(QC)步骤的重要性,研究人员在进行临床前研究时需要了解这些步骤。这些步骤包括确认活性药物成分及其预期的精确浓度;以及一个设计合理且符合体内实验动物研究报告(ARRIVE)指南的实验设计。
综合我们执行带有QC检查点的严格筛选策略的经验,为在动物模型中进行转化研究的挑战提供了见解。PTC流程是由美国国立衰老研究所(NIA)支持的资源,研究界的研究人员可通过该资源提名化合物进行测试(https://stopadportal.synapse.org/),这些资源最终将有助于开展更好的转化研究。