Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation.
Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31137-31147. doi: 10.1021/acsami.0c06996. Epub 2020 Jul 2.
Core-shell particles made of calcium carbonate and coated with biocompatible polymers using the Layer-by-Layer technique can be considered as a unique drug-delivery platform that enables us to load different therapeutic compounds, exhibits a high biocompatibility, and can integrate several stimuli-responsive mechanisms for drug release. However, before implementation for diagnostic or therapeutic purposes, such core-shell particles require a comprehensive evaluation in terms of physicochemical and pharmacokinetic properties. Positron emission tomography (PET) is an advanced imaging technique for the evaluation of biodistribution of drug carriers; nevertheless, an incorporation of positron emitters in these carriers is needed. Here, for the first time, we demonstrate the radiolabeling approaches of calcium carbonate core-shell particles with different sizes (CaCO micron-sized core-shell particles (MicCSPs) and CaCO submicron-sized core-shell particles (SubCSPs)) to precisely determine their biodistribution after intravenous administration in rats. For this, several methods of radiolabeling have been developed, where the positron emitter (Ga) was incorporated into the particle's core (co-precipitation approach) or onto the surface of the shell (either layer coating or adsorption approaches). According to the obtained data, radiochemical bounding and stability of Ga strongly depend on the used radiolabeling approach, and the co-precipitation method has shown the best radiochemical stability in human serum (96-98.5% for both types of core-shell particles). Finally, we demonstrate the size-dependent effect of core-shell particles' distribution on the specific organ uptake, using a combination of imaging techniques, PET, and computerized tomography (CT), as well as radiometry of separate organs. Thus, our findings open up new perspectives of CaCO-radiolabeled core-shell particles for their further implementation into clinical practice.
采用层层技术制备的碳酸钙核壳粒子,表面包覆生物相容性聚合物,可以作为一种独特的药物递送平台,使我们能够载入不同的治疗化合物,具有较高的生物相容性,并能整合几种刺激响应的药物释放机制。然而,在将其用于诊断或治疗之前,这种核壳粒子需要在理化性质和药代动力学性质方面进行全面评估。正电子发射断层扫描(PET)是一种用于评估药物载体生物分布的先进成像技术;然而,需要在这些载体中掺入正电子发射体。在这里,我们首次展示了不同粒径的碳酸钙核壳粒子(微米级碳酸钙核壳粒子(MicCSPs)和亚微米级碳酸钙核壳粒子(SubCSPs))的放射性标记方法,以精确确定它们在大鼠静脉注射后的生物分布。为此,开发了几种放射性标记方法,其中将正电子发射体(Ga)掺入粒子的核心(共沉淀方法)或壳的表面(层涂或吸附方法)。根据获得的数据,Ga 的放射化学结合和稳定性强烈依赖于所使用的放射性标记方法,共沉淀方法在人血清中显示出最好的放射化学稳定性(两种核壳粒子均为 96-98.5%)。最后,我们结合成像技术、PET 和计算机断层扫描(CT)以及单独器官的放射性测量,证明了核壳粒子分布对特定器官摄取的尺寸依赖性效应。因此,我们的发现为碳酸钙放射性标记核壳粒子在临床实践中的进一步应用开辟了新的前景。