State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol. 2020 Jul 21;54(14):8739-8749. doi: 10.1021/acs.est.0c00950. Epub 2020 Jul 1.
Organic soil is an important transient reservoir of mercury (Hg) in terrestrial ecosystems, but the fate of deposited Hg in organic forest soil is poorly understood. To understand the dynamic changes of deposited Hg on forest floor, the composition of stable Hg and carbon (C) isotopes in decomposing litters and organic soil layer was measured to construct the 500 year history of postdepositional Hg transformation in a subtropical evergreen broad-leaf forest in Southwest China. Using the observational data and a multiprocess isotope model, the contributions of microbial reduction, photoreduction, and dark reduction mediated by organic matter to the isotopic transition were estimated. Microbial reduction and photoreduction play a dominant role in the initial litter decomposition during first 2 years. Dark redox reactions mediated by organic matter become the predominant process in the subsequent 420 years. After that, the values of Hg mass dependent fractionation (MDF), mass independent fractionation (MIF), and ΔHg/ΔHg ratio do not change significantly, indicating sequestration and immobilization of Hg in soil. The linear correlations between the isotopic signatures of Hg and C suggest that postdepositional transformation of Hg is closely linked to the fate of natural organic matter (NOM). Our findings are consistent with the abiotic dark reduction driven by nuclear volume effect reported in boreal and tropical forests. We recommend that the dark reduction process be incorporated in future model assessment of the global Hg biogeochemical cycle.
有机土壤是陆地生态系统中汞(Hg)的重要暂存库,但沉积 Hg 在有机森林土壤中的归宿仍不清楚。为了了解森林地表沉积 Hg 的动态变化,本研究测定了分解凋落物和有机土壤层中稳定 Hg 的组成和碳(C)同位素,以构建中国西南亚热带常绿阔叶林沉积 Hg 转化的 500 年历史。利用观测数据和多过程同位素模型,估算了微生物还原、光还原和有机质介导的暗还原对同位素转变的贡献。微生物还原和光还原在最初的 2 年内主导着凋落物的初始分解。随后的 420 年内,有机质介导的暗氧化还原反应成为主要过程。此后,Hg 质量依赖分馏(MDF)、质量独立分馏(MIF)和 ΔHg/ΔHg 比值的变化不大,表明 Hg 在土壤中被固定和封存。Hg 的同位素特征与 C 的同位素特征之间的线性相关性表明,Hg 的沉积后转化与天然有机质(NOM)的命运密切相关。我们的研究结果与报道的北方和热带森林中由核体积效应驱动的非生物暗还原过程一致。我们建议在未来的全球 Hg 生物地球化学循环模型评估中纳入暗还原过程。