Jiskra Martin, Wiederhold Jan G, Skyllberg Ulf, Kronberg Rose-Marie, Kretzschmar Ruben
Soil Chemistry, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CHN, CH-8092 Zurich, Switzerland.
Environ Sci Process Impacts. 2017 Oct 18;19(10):1235-1248. doi: 10.1039/c7em00245a.
Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (ΔHg and ΔHg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.
陆地径流是汞(Hg)进入水生生态系统的主要来源。在北方森林集水区,比如这里研究的瑞典北部的一个集水区,与天然有机物(NOM)结合的汞在径流中的占比很大。我们提出了一种测量胶体汞汞稳定同位素特征的方法,该胶体汞主要与天然水体中高分子量或胶体态天然有机物(NOM)络合,方法是先通过超滤进行预富集,然后冷冻干燥并燃烧。我们报告称,北方森林径流中与高分子量NOM相关的汞与集水区有机土壤层的汞同位素特征非常相似。在土壤和径流中测得的质量无关分馏(MIF)特征(Δ¹⁹⁹Hg和Δ²⁰¹Hg)与大气气态单质汞(Hg)报告的典型值一致,且明显不同于降水中报告的汞同位素特征。因此,我们认为北方陆地生态系统中的大部分汞源自通过叶面吸收的汞沉积,而非降水。使用混合模型,我们计算了土壤层对径流中汞的贡献。在采样期间普遍存在的中高流量径流条件下,有机层的最上部(Oe/He)贡献了径流中50 - 70%的汞,而下方腐殖化程度更高的有机层Oa/Ha和矿质土壤层汞的迁移率较低。汞同位素结果与其他使用放射性碳特征和Hg∶C比的源追踪方法的良好一致性,为汞与NOM之间的强耦合提供了额外支持。本研究的探索性结果说明了汞稳定同位素在追踪汞从大气沉积通过陆地生态系统到土壤径流的来源方面的潜力,并为使用汞同位素特征更深入研究陆地生态系统中汞的迁移率提供了基础。