Caneva Sabina, Hermans Matthijs, Lee Martin, García-Fuente Amador, Watanabe Kenji, Taniguchi Takashi, Dekker Cees, Ferrer Jaime, van der Zant Herre S J, Gehring Pascal
Kavli Institute of Nanotechnology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Departamento de Fı́sica, Universidad de Oviedo, 33007 Oviedo, Spain.
Nano Lett. 2020 Jul 8;20(7):4924-4931. doi: 10.1021/acs.nanolett.0c00984. Epub 2020 Jun 24.
Graphene quantum dots (QDs) are intensively studied as platforms for the next generation of quantum electronic devices. Fine tuning of the transport properties in monolayer graphene QDs, in particular with respect to the independent modulation of the tunnel barrier transparencies, remains challenging and is typically addressed using electrostatic gating. We investigate charge transport in back-gated graphene mechanical break junctions and reveal Coulomb blockade physics characteristic of a single, high-quality QD when a nanogap is opened in a graphene constriction. By mechanically controlling the distance across the newly formed graphene nanogap, we achieve reversible tunability of the tunnel coupling to the drain electrode by 5 orders of magnitude, while keeping the source-QD tunnel coupling constant. The break junction device can therefore become a powerful platform to study the physical parameters that are crucial to the development of future graphene-based devices, including energy converters and quantum calorimeters.
石墨烯量子点(QDs)作为下一代量子电子器件的平台受到了广泛研究。对单层石墨烯量子点中的输运特性进行精细调控,尤其是对隧道势垒透明度的独立调制,仍然具有挑战性,通常采用静电门控来解决。我们研究了背栅石墨烯机械断裂结中的电荷输运,并揭示了当在石墨烯缩颈处打开纳米间隙时单个高质量量子点的库仑阻塞物理特性。通过机械控制新形成的石墨烯纳米间隙的宽度,我们实现了与漏极电极的隧道耦合的可逆可调性,范围达5个数量级,同时保持源极 - 量子点的隧道耦合常数不变。因此,这种断裂结器件可以成为一个强大的平台,用于研究对未来基于石墨烯的器件(包括能量转换器和量子量热计)的发展至关重要的物理参数。