JARA-FIT and 2nd Institute of Physics , RWTH Aachen University , 52074 Aachen , Germany, European Union.
Peter Grünberg Institute (PGI-9) , Forschungszentrum Jülich , 52425 Jülich , Germany, European Union.
Nano Lett. 2018 Aug 8;18(8):4785-4790. doi: 10.1021/acs.nanolett.8b01303. Epub 2018 Jul 6.
We present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron-hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron-hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.
我们展示了在静电带隙双层石墨烯中进行的栅控单量子点、双量子点和三量子点操作。由于最近在样品制备方面的进展,包括将双层石墨烯封装在六方氮化硼中以及使用石墨栅极,已经可以在双层石墨烯中静电限制载流子,并通过量子点器件完全阻断电流。在这里,我们讨论了电子-空穴双量子点的操作和特性。我们展示了我们的器件具有出色的控制能力,这使得实现两个非常相似能量尺度的不同栅极定义的电子-空穴双量子点系统成为可能。在单量子点状态下,我们提取了激发态能量,并研究了它们在平行磁场中的演化,这与 g 因子为 2 时预期的塞曼自旋劈裂一致。