Suppr超能文献

单细胞力谱研究显示,真菌孢子在缩水甘油丙基三甲氧基硅烷修饰的硅纳米粒子表面的黏附作用。

Fungal spore adhesion on glycidoxypropyltrimethoxy silane modified silica nanoparticle surfaces as revealed by single cell force spectroscopy.

机构信息

ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW 2522, Australia.

出版信息

Biointerphases. 2020 Jun 17;15(3):031012. doi: 10.1116/6.0000142.

Abstract

Thin film coatings prepared from commercially available glycidoxypropyltrimethoxysilane (GPS) modified silica nanoparticles (SiNPs) (Bindzil® CC301 and Bindzil® CC302) have previously shown excellent antifouling performance against a broad range of microbes [Molino et al., "Hydration layer structure of biofouling-resistant nanoparticles," ACS Nano 12, 11610 (2018)]. In this work, single cell force spectroscopy (SCFS) was used to measure the biological interactions between Epicoccum nigrum fungal spores and the same silica nanoparticle-based surfaces used in the aforementioned study, including a: glass coverslip, unmodified SiNP coatings, and both low (Bindzil® CC301) and high density (CC302) GPS functionalized SiNP coatings as a function of NaCl concentration. From the SCFS curves, the spore adhesion to the surface was greatest on the glass coverslip (20-80 nN) followed by the unmodified SiNP (3-5 nN) across all salt concentrations. Upon approach to both surfaces, the spores showed a long-range attraction generally with a profile characteristic of biointeractions and likely those of the outer cell wall structures or biological constituents. The attractive force allowed the spores to initially adhere to the surface and was found to be linearly proportional to the spore adhesion. In comparison, both high and low density GPS-SINP significantly reduced the spore adhesion (0.5-0.9 nN). In addition, the spore adhesion on high density GPS-SiNP occurred in only 14%-27% of SCFS curves (40%-48% for low density GPS-SiNP) compared to 83%-97% for the unmodified SiNP, indicating that in most cases the GPS functionalization completely prevented spore adhesion. The GPS-SiNP surfaces conversely showed a long-range electrostatic repulsion at low 1mM NaCl that was replaced by short-range repulsion at the higher salt concentrations. From the findings, it is proposed that the attractive force is a critical step in initial adhesion processes of the spore. The effective antifouling properties of the GPS are attributed to the ability to negate the attractive forces, either through electrostatic repulsion in low salt conditions and primarily from short-range repulsion correlating to the previously reported combined steric-hydration effect of the GPS functionalization on SiNP coatings.

摘要

先前的研究表明,由商业可得的缩水甘油丙基三甲氧基硅烷(GPS)改性的硅纳米颗粒(SiNPs)(Bindzil® CC301 和 Bindzil® CC302)制备的薄膜涂层对多种微生物具有出色的抗污性能[Molino 等人,“抗生物污染纳米颗粒的水合层结构”,ACS Nano 12,11610(2018)]。在这项工作中,单细胞力谱(SCFS)用于测量黑曲霉真菌孢子与上述研究中使用的相同硅纳米颗粒基表面之间的生物相互作用,包括:玻璃盖玻片、未修饰的 SiNP 涂层以及低(Bindzil® CC301)和高(CC302)GPS 功能化 SiNP 涂层,作为 NaCl 浓度的函数。从 SCFS 曲线可以看出,孢子在玻璃盖玻片上的附着最强(20-80 nN),其次是未修饰的 SiNP(3-5 nN),所有盐浓度下均如此。在接近两个表面时,孢子显示出长程吸引力,通常具有生物相互作用的特征,可能是细胞壁结构或生物成分的特征。这种吸引力使孢子最初能够附着在表面上,并且发现它与孢子附着呈线性相关。相比之下,高和低 GPS-SINP 都显著降低了孢子的附着(0.5-0.9 nN)。此外,与未修饰的 SiNP 相比,高密度 GPS-SiNP 上的孢子附着仅发生在 40%-48%的 SCFS 曲线中(低密度 GPS-SiNP 为 14%-27%),表明在大多数情况下,GPS 功能化完全阻止了孢子附着。相反,GPS-SiNP 表面在低 1mM NaCl 下表现出长程静电斥力,而在较高盐浓度下则表现为短程斥力。从这些发现中可以提出,吸引力是孢子初始附着过程中的关键步骤。GPS 的有效抗污性能归因于抵消吸引力的能力,无论是在低盐条件下通过静电斥力,还是主要通过与 GPS 功能化对 SiNP 涂层的先前报道的组合空间位阻-水合效应相关的短程斥力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验