Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan.
Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
J Mol Biol. 2020 Jul 24;432(16):4637-4657. doi: 10.1016/j.jmb.2020.06.011. Epub 2020 Jun 15.
Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized. We reported previously that the DNA-binding domain in Drosophila SSRP1 (dSSRP1) has multiple casein kinase II phosphorylation sites, and the DNA binding affinity of the domain changes sigmoidally in response to the degree of phosphorylation ("ultrasensitive response"). In this report, we explored the molecular mechanisms for the ultrasensitive response of the DNA-binding domain in dSSRP1 using the shortest fragment (AB-HMG, residues 434-624) responsible for nucleosome binding. AB-HMG contains two intrinsically disordered (ID) regions: the N-terminal part rich in acidic residues (AID) and the C-terminal part rich in basic residues (BID) followed by the HMG box. NMR and coarse-grained molecular dynamics simulations revealed a phosphorylation-dependent change in intramolecular contacts between the AID and BID-HMG, which is mediated by a hinge bending motion of AB-HMG to enable the ultrasensitive response. Ultrasensitivity generates two distinct forms of dSSRP1, which are high- and low-affinity nucleosome-binding forms. Drosophila FACT (dFACT) switches function according to the degree of phosphorylation of the AID in dSSRP1. We propose that dFACT in various phosphorylation states functions cooperatively to facilitate gene regulation in the context of the chromatin.
有助于染色质转录的因子(FACT)是一种组蛋白伴侣,作为核小体重塑因子和伴侣发挥作用。FACT 的两个亚基,Spt16 和 SSRP1,介导亚基与核小体成分之间的多种相互作用。在这些相互作用中,SSRPl 的 DNA 结合结构域的作用尚未得到表征。我们之前报道过,果蝇 SSRP1(dSSRP1)中的 DNA 结合结构域具有多个酪蛋白激酶 II 磷酸化位点,并且该结构域的 DNA 结合亲和力会根据磷酸化程度呈“S 型”变化(“超敏反应”)。在本报告中,我们使用负责核小体结合的最短片段(AB-HMG,残基 434-624)探索了 dSSRP1 中 DNA 结合结构域超敏反应的分子机制。AB-HMG 包含两个固有无序(ID)区域:富含酸性残基的 N 端部分(AID)和富含碱性残基的 C 端部分(BID),后面是 HMG 盒。NMR 和粗粒度分子动力学模拟揭示了 AID 和 BID-HMG 之间的分子内接触的磷酸化依赖性变化,这是通过 AB-HMG 的铰链弯曲运动介导的,从而实现了超敏反应。超敏反应产生两种不同形式的 dSSRP1,即高亲和性和低亲和性核小体结合形式。果蝇 FACT(dFACT)根据 dSSRP1 中 AID 的磷酸化程度切换功能。我们提出,各种磷酸化状态的 dFACT 协同作用,以促进染色质背景下的基因调控。