Suppr超能文献

黏附连接蛋白-桥粒斑珠蛋白复合体的破坏可重现人类唇腭裂综合征 CLPED1 的特征。

Disruption of the nectin-afadin complex recapitulates features of the human cleft lip/palate syndrome CLPED1.

机构信息

Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.

Department of Oral & Craniofacial Health Sciences, The University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA.

出版信息

Development. 2020 Jul 13;147(21):dev189241. doi: 10.1242/dev.189241.

Abstract

Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin () - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when is targeted later using We implicate and as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to loss. Finally, expression of the human disease mutant causes CP with greater penetrance than loss, suggesting this alteration may drive CP via a dominant interfering mechanism.

摘要

腭裂(CP)是最常见的先天性疾病之一,它是胚胎发育过程中二次腭发生失败引起的。一些表现为 CP 和外胚层发育不良的人类遗传综合征与调节细胞-细胞黏附的基因突变有关,但小鼠模型在很大程度上未能重现这些发现。在这里,我们使用慢病毒介导的遗传方法在小鼠中提供了第一个直接证据,证明了 nectin-afadin 轴对于适当的腭突升高和融合是必不可少的。使用这项技术,我们证明了腭上皮细胞条件性缺失 afadin()——一种必需的 nectin 和肌动蛋白结合蛋白——会导致 CP 的高发生率,而当以后使用 靶向缺失时则不会观察到这种情况。我们暗示 和 是至关重要的,因为缺失任何一个都会导致轻度腭裂闭合缺陷的低发生率,而缺失两个则会导致严重的 CP,其发生率与缺失相似。最后,表达人类疾病突变体 会导致 CP 的发生率高于 缺失,这表明这种改变可能通过显性干扰机制导致 CP。

相似文献

2
Study of the PVRL1 gene in Italian nonsyndromic cleft lip patients with or without cleft palate.
Ann Hum Genet. 2006 May;70(Pt 3):410-3. doi: 10.1111/j.1529-8817.2005.00237.x.
3
Damaging Mutations in Contribute to Risk of Nonsyndromic Cleft Lip With or Without Cleft Palate.
Cleft Palate Craniofac J. 2024 Apr;61(4):697-705. doi: 10.1177/10556656221135926. Epub 2022 Nov 16.
5
Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
J Dent Res. 2017 Oct;96(11):1210-1220. doi: 10.1177/0022034517726284. Epub 2017 Aug 17.
6
Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
J Dent Res. 2019 Nov;98(12):1367-1375. doi: 10.1177/0022034519872478. Epub 2019 Sep 11.

引用本文的文献

1
2
Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference?
Am J Med Genet A. 2023 Oct;191(10):2558-2570. doi: 10.1002/ajmg.a.63336. Epub 2023 Jun 23.
4
Damaging Mutations in Contribute to Risk of Nonsyndromic Cleft Lip With or Without Cleft Palate.
Cleft Palate Craniofac J. 2024 Apr;61(4):697-705. doi: 10.1177/10556656221135926. Epub 2022 Nov 16.
5
Critical roles of adherens junctions in diseases of the oral mucosa.
Tissue Barriers. 2023 Apr 3;11(2):2084320. doi: 10.1080/21688370.2022.2084320. Epub 2022 Jun 5.
7
Revisiting the embryogenesis of lip and palate development.
Oral Dis. 2022 Jul;28(5):1306-1326. doi: 10.1111/odi.14174. Epub 2022 Mar 5.
8
To Stick or Not to Stick: Adhesions in Orofacial Clefts.
Biology (Basel). 2022 Jan 18;11(2):153. doi: 10.3390/biology11020153.

本文引用的文献

1
Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development.
Dev Cell. 2020 Mar 23;52(6):764-778.e4. doi: 10.1016/j.devcel.2020.01.032. Epub 2020 Feb 27.
2
Telophase correction refines division orientation in stratified epithelia.
Elife. 2019 Dec 13;8:e49249. doi: 10.7554/eLife.49249.
3
The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution.
Development. 2019 Jun 17;146(12):dev174888. doi: 10.1242/dev.174888.
4
Genetic compensation triggered by mutant mRNA degradation.
Nature. 2019 Apr;568(7751):193-197. doi: 10.1038/s41586-019-1064-z. Epub 2019 Apr 3.
5
Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
J Dent Res. 2017 Oct;96(11):1210-1220. doi: 10.1177/0022034517726284. Epub 2017 Aug 17.
6
Periderm: Life-cycle and function during orofacial and epidermal development.
Semin Cell Dev Biol. 2019 Jul;91:75-83. doi: 10.1016/j.semcdb.2017.08.021. Epub 2017 Aug 10.
7
p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate.
PLoS Genet. 2017 Jun 12;13(6):e1006828. doi: 10.1371/journal.pgen.1006828. eCollection 2017 Jun.
8
Shared molecular networks in orofacial and neural tube development.
Birth Defects Res. 2017 Jan 30;109(2):169-179. doi: 10.1002/bdra.23598.
9
LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development.
Development. 2016 Aug 1;143(15):2803-17. doi: 10.1242/dev.136010. Epub 2016 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验