i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal.
Cell Commun Signal. 2024 Feb 27;22(1):152. doi: 10.1186/s12964-024-01532-x.
Germline mutations of E-cadherin contribute to hereditary diffuse gastric cancer (HDGC) and congenital malformations, such as oral facial clefts (OFC). However, the molecular mechanisms through which E-cadherin loss-of-function triggers distinct clinical outcomes remain unknown. We postulate that E-cadherin-mediated disorders result from abnormal interactions with the extracellular matrix and consequent aberrant intracellular signalling, affecting the coordination of cell migration.
Herein, we developed in vivo and in vitro models of E-cadherin mutants associated with either OFC or HDGC. Using a Drosophila approach, we addressed the impact of the different variants in cell morphology and migration ability. By combining gap closure migration assays and time-lapse microscopy, we further investigated the migration pattern of cells expressing OFC or HDGC variants. The adhesion profile of the variants was evaluated using high-throughput ECM arrays, whereas RNA sequencing technology was explored for identification of genes involved in aberrant cell motility.
We have demonstrated that cells expressing OFC variants exhibit an excessive motility performance and irregular leading edges, which prevent the coordinated movement of the epithelial monolayer. Importantly, we found that OFC variants promote cell adhesion to a wider variety of extracellular matrices than HDGC variants, suggesting higher plasticity in response to different microenvironments. We unveiled a distinct transcriptomic profile in the OFC setting and pinpointed REG1A as a putative regulator of this outcome. Consistent with this, specific RNAi-mediated inhibition of REG1A shifted the migration pattern of OFC expressing cells, leading to slower wound closure with coordinated leading edges.
We provide evidence that E-cadherin variants associated with OFC activate aberrant signalling pathways that support dynamic rearrangements of cells towards improved adaptability to the microenvironment. This proficiency results in abnormal tissue shaping and movement, possibly underlying the development of orofacial malformations.
E-钙黏蛋白的胚系突变可导致遗传性弥漫性胃癌(HDGC)和先天性畸形,如口腔面裂(OFC)。然而,E-钙黏蛋白功能丧失导致不同临床结局的分子机制尚不清楚。我们假设 E-钙黏蛋白介导的紊乱是由于与细胞外基质的异常相互作用和随后的异常细胞内信号转导引起的,从而影响细胞迁移的协调。
在此,我们开发了与 OFC 或 HDGC 相关的 E-钙黏蛋白突变体的体内和体外模型。我们使用果蝇方法研究了不同变体对细胞形态和迁移能力的影响。通过结合缝隙闭合迁移测定和延时显微镜观察,我们进一步研究了表达 OFC 或 HDGC 变体的细胞的迁移模式。通过高通量 ECM 阵列评估变体的粘附特性,同时探索 RNA 测序技术来鉴定参与异常细胞运动的基因。
我们已经证明,表达 OFC 变体的细胞表现出过度的迁移性能和不规则的前缘,这会阻止上皮单层的协调运动。重要的是,我们发现 OFC 变体比 HDGC 变体促进细胞对更广泛种类的细胞外基质的粘附,这表明对不同微环境具有更高的可塑性。我们在 OFC 环境中发现了一个独特的转录组谱,并确定 REG1A 是该结果的一个潜在调节因子。与这一发现一致的是,特异性 RNAi 介导的 REG1A 抑制使表达 OFC 的细胞的迁移模式发生转变,导致具有协调前缘的伤口闭合速度较慢。
我们提供的证据表明,与 OFC 相关的 E-钙黏蛋白变体激活了异常的信号通路,支持细胞向改善对微环境的适应性进行动态重排。这种功能使细胞能够形成异常的组织形状和运动,这可能是口腔面裂畸形发展的基础。