University of Trento, Via Sommarive 14, 38123 Trento, Italy.
Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy.
Phys Med Biol. 2020 Dec 17;65(24):245024. doi: 10.1088/1361-6560/ab9e56.
Relative biological effectiveness (RBE) variations are thought to be one of the primary causes of unexpected normal-tissue toxicities during tumor treatments with charged particles. Unlike carbon therapy, where treatment planning is optimized on the basis of the RBE-weighted dose, a constant RBE value of 1.1 is currently used in proton therapy. Assuming a uniform value can lead to under- or over-dosage, not just to the tumor but also to surrounding normal tissue. RBE changes have been linked with dose/fraction, the biological endpoint and beam properties. Understanding radiation quality and the associated RBE can improve the prediction of normal-tissue toxicities. In this study, we exploited microdosimetry for characterizing radiation quality in proton therapy in-field, and off-beam at 20 (beam edge), 50 (close out-of-field) and 100 (far out-of-field) mm from the beam center. We measured the lineal energy y spectra in a water phantom irradiated with 152 MeV protons, from which beam quality as well as the physical dose could be obtained. Taking advantage of the linear quadratic model and a modified version of the microdosimetric kinetic model, the microdosimetric data were combined with radiobiological parameters (α and β) of human salivary gland tumor cells for assessing cell survival RBE and RBE-weighted dose. The results indicate that if a dose of 60 Gy is delivered to the peak, the beam edge receives up to 6 Gy while the close and far out-of-field regions receive doses on the order of 10 Gy and 10 Gy, respectively. The RBE estimate in-beam shows large variations, ranging from 1.0 ± 0.2 at the entrance channel to 2.51 ± 0.15 at the tail. The beam edge follows a similar trend but the RBE calculated at the Bragg peak depth is 2.27 ± 0.17, i.e. twice the RBE in-beam (1.05 ± 0.15). Out-of-field, the estimated RBE is always significantly higher than 1.1 and increases with increasing lateral distance, reaching the overall highest value of 3.4 ± 0.3 at a depth of 206 mm and a lateral distance of 10 mm. The combination of RBE and dose into the biological dose points to the beam edge and the end-of-range in-beam as the areas with the highest risk of potential toxicities.
相对生物效应(RBE)的变化被认为是导致带电荷粒子肿瘤治疗中出现意外正常组织毒性的主要原因之一。与碳治疗不同,碳治疗是基于 RBE 加权剂量进行治疗计划优化,而质子治疗目前使用的是恒定的 RBE 值 1.1。假设一个统一的值可能会导致肿瘤和周围正常组织的剂量不足或过量。RBE 的变化与剂量/分次、生物学终点和射束特性有关。了解辐射质量和相关的 RBE 可以提高对正常组织毒性的预测。在这项研究中,我们利用微剂量学来描述质子治疗中射束内和射束外的辐射质量,在距射束中心 20(射束边缘)、50(远出射束)和 100mm(远出射束)处进行测量。我们在一个被 152 MeV 质子照射的水模体中测量了线性能量 y 谱,从中可以获得束质和物理剂量。利用线性二次模型和微剂量动力学模型的一个修正版本,将微剂量学数据与人类唾液腺肿瘤细胞的放射生物学参数(α和β)相结合,评估细胞存活 RBE 和 RBE 加权剂量。结果表明,如果在峰值处给予 60Gy 的剂量,那么在射束边缘处可接收高达 6Gy 的剂量,而在近和远出射束区域处可接收剂量分别为 10Gy 和 10Gy。在射束内,RBE 的估计值存在很大的变化,从入口通道处的 1.0±0.2 到尾部处的 2.51±0.15。射束边缘处呈现出类似的趋势,但在布拉格峰深度处计算出的 RBE 为 2.27±0.17,即射束内 RBE 的两倍(1.05±0.15)。在远出射束中,估计的 RBE 总是明显高于 1.1,并随着横向距离的增加而增加,在深度为 206mm 和横向距离为 10mm 处达到整体最高值 3.4±0.3。RBE 和剂量组合成生物剂量,指出了射束边缘和射程末端是潜在毒性风险最高的区域。