Suppr超能文献

鉴定非遗传毒性肝癌评估的时不变生物标志物。

Identification of Time-Invariant Biomarkers for Non-Genotoxic Hepatocarcinogen Assessment.

机构信息

Ph. D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

出版信息

Int J Environ Res Public Health. 2020 Jun 16;17(12):4298. doi: 10.3390/ijerph17124298.

Abstract

Non-genotoxic hepatocarcinogens (NGHCs) can only be confirmed by 2-year rodent studies. Toxicogenomics (TGx) approaches using gene expression profiles from short-term animal studies could enable early assessment of NGHCs. However, high variance in the modulation of the genes had been noted among exposure styles and datasets. Expanding from our previous strategy in identifying consensus biomarkers in multiple experiments, we aimed to identify time-invariant biomarkers for NGHCs in short-term exposure styles and validate their applicability to long-term exposure styles. In this study, nine time-invariant biomarkers, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3, Cyp2c11, Ntf3, and Sds, were identified from four large-scale microarray datasets. Machine learning techniques were subsequently employed to assess the prediction performance of the biomarkers. The biomarker set along with the Random Forest models gave the highest median area under the receiver operating characteristic curve (AUC) of 0.824 and a low interquartile range (IQR) variance of 0.036 based on a leave-one-out cross-validation. The application of the models to the external validation datasets achieved high AUC values of greater than or equal to 0.857. Enrichment analysis of the biomarkers inferred the involvement of chronic inflammatory diseases such as liver cirrhosis, fibrosis, and hepatocellular carcinoma in NGHCs. The time-invariant biomarkers provided a robust alternative for NGHC prediction.

摘要

非遗传毒性肝癌致癌物(NGHCs)只能通过为期两年的啮齿动物研究来确认。使用来自短期动物研究的基因表达谱的毒理基因组学(TGx)方法可以早期评估 NGHCs。然而,在不同的暴露方式和数据集之间,基因的调节存在很大的差异。在我们之前在多个实验中识别共识生物标志物的策略的基础上,我们旨在确定短期暴露方式中用于 NGHCs 的时间不变生物标志物,并验证其在长期暴露方式中的适用性。在这项研究中,从四个大型微阵列数据集确定了九个时间不变的生物标志物,即 A2m、Akr7a3、Aqp7、Ca3、Cdc2a、Cdkn3、Cyp2c11、Ntf3 和 Sds。随后使用机器学习技术评估了生物标志物的预测性能。基于留一交叉验证,生物标志物组和随机森林模型的组合给出了最高的中位数接收器操作特征曲线(AUC)为 0.824,并且四分位距(IQR)方差低至 0.036。模型在外部验证数据集上的应用获得了大于或等于 0.857 的高 AUC 值。生物标志物的富集分析推断出慢性炎症性疾病(如肝硬化、纤维化和肝细胞癌)在 NGHCs 中的参与。时间不变的生物标志物为 NGHC 预测提供了一种稳健的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eba/7345770/68b05fda9c99/ijerph-17-04298-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验