Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
Neuroimage. 2020 Oct 15;220:117059. doi: 10.1016/j.neuroimage.2020.117059. Epub 2020 Jun 17.
The cingulate cortex is part of the limbic system. Its function and connectivity are organized in a rostro-caudal and ventral-dorsal manner which was addressed by various other studies using rather coarse cortical parcellations. In this study, we aim at describing its function and connectivity using invasive recordings from patients explored for focal drug-resistant epilepsy. We included patients that underwent stereo-electroencephalographic recordings using intracranial electrodes in the University Emergency Hospital Bucharest between 2012 and 2019. We reviewed all high frequency stimulations (50 Hz) performed for functional mapping of the cingulate cortex. We used two methods to characterize brain connectivity. Effective connectivity was inferred based on the analysis of cortico-cortical potentials (CCEPs) evoked by single pulse electrical stimulation (SPES) (15 s inter-pulse interval). Functional connectivity was estimated using the non-linear regression method applied to 60 s spontaneous electrical brain signal intervals. The effective (stimulation-evoked) and functional (non-evoked) connectivity analyses highlight brain networks in a different way. While non-evoked connectivity evidences areas having related activity, often in close proximity to each other, evoked connectivity highlights spatially extended networks. To highlight in a comprehensive way the cingulate cortex's network, we have performed a bi-modal connectivity analysis that combines the resting-state broadband h non-linear correlation with cortico-cortical evoked potentials. We co-registered the patient's anatomy with the fsaverage FreeSurfer template to perform the automatic labeling based on HCP-MMP parcellation. At a group level, connectivity was estimated by averaging responses over stimulated/recorded or recorded sites in each pair of parcels. Finally, for multiple regions that evoked a clinical response during high frequency stimulation, we combined the connectivity of individual pairs using maximum intensity projection. Connectivity was assessed by applying SPES on 2094 contact pairs and recording CCEPs on 3580 contacts out of 8582 contacts of 660 electrodes implanted in 47 patients. Clinical responses elicited by high frequency stimulations in 107 sites (pairs of contacts) located in the cingulate cortex were divided in 10 groups: affective, motor behavior, motor elementary, versive, speech, vestibular, autonomic, somatosensory, visual and changes in body perception. Anterior cingulate cortex was shown to be connected to the mesial temporal, orbitofrontal and prefrontal cortex. In the middle cingulate cortex, we located affective, motor behavior in the anterior region, and elementary motor and somatosensory in the posterior part. This region is connected to the prefrontal, premotor and primary motor network. Finally, the posterior cingulate was shown to be connected with the visual areas, mesial and lateral parietal and temporal cortex.
扣带皮层是边缘系统的一部分。其功能和连接性以头-尾和腹-背的方式组织,这在其他使用相当粗略的皮质分割的研究中已经得到了证实。在这项研究中,我们旨在使用接受局灶性耐药性癫痫治疗的患者的侵入性记录来描述其功能和连接性。我们纳入了 2012 年至 2019 年期间在布加勒斯特大学急诊医院接受颅内电极立体脑电图记录的患者。我们回顾了所有为扣带皮层功能定位而进行的 50Hz 高频刺激。我们使用了两种方法来描述大脑连接性。基于单脉冲电刺激(SPES)诱发的皮质-皮质电位(CCEPs)分析,推断出有效连接性(15s 脉冲间隔)。使用非线性回归方法对 60s 自发脑电信号间隔进行功能连接性估计。有效(刺激诱发)和功能(非诱发)连接性分析以不同的方式突出大脑网络。虽然非诱发连接性证明了具有相关活动的区域,通常彼此靠近,但诱发连接性突出了空间扩展的网络。为了全面突出扣带皮层的网络,我们进行了双模态连接性分析,将静息状态宽带 h 非线性相关性与皮质-皮质诱发电位相结合。我们将患者的解剖结构与 fsaverage FreeSurfer 模板配准,以便基于 HCP-MMP 分割进行自动标记。在组水平上,通过在每个对的包裹中对刺激/记录或记录的站点进行平均响应来估计连接性。最后,对于在高频刺激期间引起临床反应的多个区域,我们使用最大强度投影组合各个对的连接性。通过对 47 名患者的 660 个电极的 8582 个接触点中的 2094 个接触对施加 SPES 并记录 3580 个 CCEPs,评估了连接性。在位于扣带皮层的 107 个(接触对)位点进行高频刺激后,临床反应被分为 10 组:情感、运动行为、运动初级、转向、言语、前庭、自主、躯体感觉、视觉和身体知觉改变。前扣带皮层与内侧颞叶、眶额和前额叶皮层相连。在中扣带皮层中,我们在前部区域发现了情感、运动行为,在后部区域发现了运动初级和躯体感觉。该区域与前额叶、运动前和初级运动网络相连。最后,后扣带皮层与视觉区域、内侧和外侧顶叶以及颞叶皮层相连。