Suppr超能文献

基于路侧激光雷达传感器的车辆行人近撞预警改进识别方法。

An improved vehicle-pedestrian near-crash identification method with a roadside LiDAR sensor.

机构信息

School of Qilu Transportation, Shandong University, China.

University of Nevada, Reno, Reno, NV 89557, United States.

出版信息

J Safety Res. 2020 Jun;73:211-224. doi: 10.1016/j.jsr.2020.03.006. Epub 2020 Apr 3.

Abstract

PROBLEM

Potential conflicts between pedestrians and vehicles represent a challenge to pedestrian safety. Near-crash is used as a surrogate metric for pedestrian safety evaluations when historical vehicle-pedestrian crash data are not available. One challenge of using near-crash data for pedestrian safety evaluation is the identification of near-crash events.

METHOD

This paper introduces a novel method for pedestrian-vehicle near-crash identification that uses a roadside LiDAR sensor. The trajectory of each road user can be extracted from roadside LiDAR data via several data processing algorithms: background filtering, lane identification, object clustering, object classification, and object tracking. Three indicators, namely, the post encroachment time (PET), the proportion of the stopping distance (PSD), and the crash potential index (CPI) are applied for conflict risk classification.

RESULTS

The performance of the developed method was evaluated with field-collected data at four sites in Reno, Nevada, United States. The results of case studies demonstrate that pedestrian-vehicle near-crash events could be identified successfully via the proposed method. Practical applications: The proposed method is especially suitable for pedestrian-vehicle near-crash identification at individual sites. The extracted near-crash events can serve as supplementary material to naturalistic driving study (NDS) data for safety evaluation.

摘要

问题

行人和车辆之间的潜在冲突对行人安全构成挑战。当没有历史上的车辆-行人碰撞数据时,接近碰撞被用作行人安全评估的替代指标。使用接近碰撞数据进行行人安全评估的一个挑战是识别接近碰撞事件。

方法

本文介绍了一种使用路边激光雷达传感器识别行人和车辆接近碰撞的新方法。每个道路使用者的轨迹可以通过几种数据处理算法从路边激光雷达数据中提取出来:背景过滤、车道识别、目标聚类、目标分类和目标跟踪。三个指标,即后侵入时间(PET)、停车距离比例(PSD)和碰撞可能性指数(CPI),用于冲突风险分类。

结果

该方法的性能在美国内华达州里诺的四个地点使用现场收集的数据进行了评估。案例研究的结果表明,通过提出的方法可以成功识别行人和车辆的接近碰撞事件。实际应用:该方法特别适合于个别地点的行人和车辆接近碰撞识别。提取的接近碰撞事件可以作为自然驾驶研究(NDS)数据的补充材料,用于安全评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验