Segel I H, Martin R L
Department of Biochemistry and Biophysics, University of California, Davis 95616.
J Theor Biol. 1988 Dec 19;135(4):445-53. doi: 10.1016/s0022-5193(88)80269-8.
The general unireactant modifier mechanism in the absence of product can be described by the following linked reactions: E + S k1 in equilibrium k-1 ES k3----E + P; E + I k5 in equilibrium k-5 EI; EI + S k2 in equilibrium k-2 ESI k4----EI + P; and ES + I k6 in equilibrium k-6 ESI where S is a substrate and I is an effector. A full steady state treatment yields a velocity equation that is second degree in both [S] and [I]. Two different conditions (or assumptions) permit reduction of the velocity equation to one that is first degree in [S] and [I]. These are (a) that k-2k3 = k-1k4 (Frieden, C., J. Biol. Chem. 239, pp. 3522-3531, (1964)) and (b) that the I-binding reactions are at equilibrium (Reinhart, G. D., Arch. Biochem. Biophys. 224, pp. 389-401 (1983)). It is shown that each condition gives rise to the other (i.e., if the I-binding reactions are at equilibrium, then k-2k3 must equal k-1k4 and vice-versa). If one assumes equilibrium for the I-binding steps, the velocity equation derived by the method of Cha (J. Biol. Chem. 243, pp. 820-825 (1968)) is apparently second degree in [I] (Segel, I. H., Enzyme Kinetics, p. 838, Wiley-Interscience (1975)), but reduces to a first degree equation when the relationship derived by Frieden is inserted. If one starts by assuming a single equilibrium condition for I binding, e.g., k-5[EI] = k5[E][I] or k-6[ESI] = k6[ES][I], then a traditional algebraic manipulation of the remaining steady state equations provides first degree expressions for the concentrations of all enzyme species and also discloses the Frieden relationship.
在没有产物的情况下,一般单反应物修饰机制可由以下连锁反应描述:E + S⇌k1k - 1ES→k3E + P;E + I⇌k5k - 5EI;EI + S⇌k2k - 2ESI→k4EI + P;以及ES + I⇌k6k - 6ESI,其中S是底物,I是效应物。完整的稳态处理得出一个速度方程,该方程在[S]和[I]中都是二次的。两种不同的条件(或假设)可使速度方程简化为在[S]和[I]中都是一次的方程。这两个条件是:(a) k - 2k3 = k - 1k4(弗里登,C.,《生物化学杂志》239卷,第3522 - 3531页,(1964)),以及(b) I结合反应处于平衡状态(莱因哈特,G. D.,《生物化学与生物物理学档案》224卷,第389 - 401页(1983))。结果表明,每个条件都会导致另一个条件成立(即,如果I结合反应处于平衡状态,那么k - 2k3必定等于k - 1k4,反之亦然)。如果假设I结合步骤处于平衡状态,通过查氏方法(《生物化学杂志》243卷,第820 - 825页(1968))推导的速度方程在[I]中显然是二次的(西格尔,I. H.,《酶动力学》,第838页,威利国际科学出版社(1975)),但当插入弗里登推导的关系时,它会简化为一次方程。如果一开始假设I结合有一个单一的平衡条件,例如k - 5[EI] = k5[E][I]或k - 6[ESI] = k6[ES][I],那么对其余稳态方程进行传统的代数运算,可得到所有酶种类浓度的一次表达式,同时也揭示了弗里登关系。