King's College London, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, London, UK.
Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin St, Coro West, Providence, RI, USA.
Sci Rep. 2020 Jun 22;10(1):10116. doi: 10.1038/s41598-020-65877-2.
It is unclear to what extent cerebellar networks show long-term plasticity and accompanied changes in cortical structures. Using drumming as a demanding multimodal motor training, we compared cerebellar lobular volume and white matter microstructure, as well as cortical thickness of 15 healthy non-musicians before and after learning to drum, and 16 age matched novice control participants. After 8 weeks of group drumming instruction, 3 ×30 minutes per week, we observed the cerebellum significantly changing its grey (volume increase of left VIIIa, relative decrease of VIIIb and vermis Crus I volume) and white matter microstructure in the inferior cerebellar peduncle. These plastic cerebellar changes were complemented by changes in cortical thickness (increase in left paracentral, right precuneus and right but not left superior frontal thickness), suggesting an interplay of cerebellar learning with cortical structures enabled through cerebellar pathways.
小脑网络在多大程度上表现出长期可塑性以及伴随的皮质结构变化尚不清楚。我们采用击鼓作为一种要求较高的多模态运动训练,比较了 15 名健康非音乐家在学习击鼓前后以及 16 名年龄匹配的新手对照组的小脑叶体积和白质微观结构以及皮质厚度。经过 8 周的小组击鼓指导,每周 3 次,每次 30 分钟,我们观察到小脑的灰质(左侧 VIIIa 体积增加,VIIIb 和蚓部 Crus I 体积相对减少)和小脑下脚的白质微观结构发生了显著变化。这些小脑的可塑性变化伴随着皮质厚度的变化(左侧旁中央、右侧楔前叶和右侧但不是左侧额上回厚度增加),这表明小脑通过小脑途径与皮质结构的相互作用促进了学习。