Hebbar Vidyashree, Viji M, Budumuru Akshay Kumar, Gautam Sanjeev, Chae Keun Hwa, Balaji K, Kalyana Sundaram N T, Subramani A K, Sudakar C
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
Advanced Functional Materials Lab, Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Punjab University, Chandigarh 160014, India.
ACS Appl Mater Interfaces. 2020 Jul 22;12(29):32566-32577. doi: 10.1021/acsami.0c05752. Epub 2020 Jul 7.
A Li-rich layered oxide (LLO) cathode with morphology-dependent electrochemical performance with the composition LiMnNiCoO in three different microstructural forms, namely, randomly shaped particles, platelets, and nanofibers, is synthesized through the solid-state reaction (SSR-LLO), hydrothermal method (HT-LLO), and electrospinning process (ES-LLO), respectively. Even though the cathodes possess different morphologies, structurally they are identical. The elemental dispersion studies using energy-dispersive X-ray spectroscopy mapping in scanning transmission electron microscopy show uniform distribution of elements. However, SSR-LLO and ES-LLO nanofibers show slight Co-rich regions. The electrochemical studies of LLO cathodes are evaluated in terms of charging/discharging, C-rate capability, and cyclic stability performances. A high reversible capacity of 275 mA h g is achieved in the fibrous LLO cathode which also demonstrates good high-rate capability (80 mA h g at 10 C-rate). These capacities and rate capabilities are superior to those of SSR-LLO [210.5 mA h g (0.1 C-rate) and 4 mA h g (3 C-rate)] and HT-LLO [242 mA h g (0.1 C-rate) and 22 mA h g (10 C-rate)] cathodes. The ES-LLO cathode exhibits 88% capacity retention after 100 cycles at 1 C-rate. A decrease in voltage on cycling is found to be common in all three cathodes; however, minimal voltage decay and capacity loss are observed in ES-LLO upon cycling. Well-connected small LLO particles constituting fibrous microstructural forms in ES-LLO provide an enhanced electrolyte/cathode interfacial area and reduced diffusion path length for Li. This, in turn, facilitates superior electrochemical performance of the electrospun Co-low LLO cathode suitable for quick charge battery applications.
通过固态反应(SSR-LLO)、水热法(HT-LLO)和静电纺丝工艺(ES-LLO)分别合成了一种富锂层状氧化物(LLO)阴极,其具有与形态相关的电化学性能,组成均为LiMnNiCoO,呈现三种不同的微观结构形式,即随机形状的颗粒、片状和纳米纤维。尽管阴极具有不同的形态,但在结构上它们是相同的。利用扫描透射电子显微镜中的能量色散X射线光谱映射进行的元素分散研究表明元素分布均匀。然而,SSR-LLO和ES-LLO纳米纤维显示出轻微的富钴区域。LLO阴极的电化学研究通过充电/放电、C倍率性能和循环稳定性性能进行评估。纤维状LLO阴极实现了275 mA h/g的高可逆容量,并且还展示出良好的高倍率性能(在10 C倍率下为80 mA h/g)。这些容量和倍率性能优于SSR-LLO阴极[210.5 mA h/g(0.1 C倍率)和4 mA h/g(3 C倍率)]和HT-LLO阴极[242 mA h/g(0.1 C倍率)和22 mA h/g(10 C倍率)]。ES-LLO阴极在1 C倍率下循环100次后容量保持率为88%。发现在所有三种阴极中循环时电压都会下降;然而,ES-LLO在循环时观察到最小的电压衰减和容量损失。ES-LLO中构成纤维微观结构形式的连接良好的小LLO颗粒提供了增强的电解质/阴极界面面积,并缩短了Li的扩散路径长度。这反过来又促进了适用于快速充电电池应用的静电纺丝低钴LLO阴极的卓越电化学性能。