Wang Errui, Zhao Yang, Xiao Dongdong, Zhang Xu, Wu Tianhao, Wang Boya, Zubair Muhammad, Li Yuqiang, Sun Xueliang, Yu Haijun
Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, P. R. China.
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B8, Canada.
Adv Mater. 2020 Dec;32(49):e1906070. doi: 10.1002/adma.201906070. Epub 2020 Nov 5.
Li-rich layered oxides (LLOs) are fascinating high-energy cathodes for lithium-ion batteries (LIBs), but still suffer from critical drawbacks that retard their practical applications. Although surface modification is effective to protect LLOs from structural deterioration, the delicate design of structures on a grain surface with promising scalability for industrial application is still challenging. Herein, using the atomic layer deposition (ALD) technique, a composite nanostructure comprising a uniform LiTaO coating layer (≈3 nm) and a spinel interlayer structure (≈1 nm) is constructed on the grain surface of industrial LLO (Li Mn Ni Co O ) agglomerated spheres. The surface composite nanostructure can not only enhance the structural/interfacial stability of the LLO, but also facilitates Li diffusion, thereby significantly improving its cycle stability, rate performance, thermal stability, and voltage maintenance. Specifically, the LLO coated with 10 ALD cycles exhibits a small voltage decay rate of 0.9 mV per cycle, a reversible capacity of 272.8 mAh g at 0.1 C, and a capacity retention of 85% after 200 cycles at 1 C, suggesting the important role of surface composite nanostructure for improving the electrochemical performance. This work provides new insights into the composite nanostructure design on the grain surface of cathode materials for high-performance LIBs.
富锂层状氧化物(LLOs)是用于锂离子电池(LIBs)的极具吸引力的高能量阴极材料,但仍存在严重缺点,阻碍了它们的实际应用。尽管表面改性可有效保护LLOs的结构不发生恶化,但在具有工业应用前景的可扩展性的晶粒表面上进行精细的结构设计仍然具有挑战性。在此,利用原子层沉积(ALD)技术,在工业LLOs(LiMnNiCoO)团聚球的晶粒表面构建了一种复合纳米结构,该结构由均匀的LiTaO涂层(约3nm)和尖晶石中间层结构(约1nm)组成。表面复合纳米结构不仅可以增强LLOs的结构/界面稳定性,还能促进锂扩散,从而显著提高其循环稳定性、倍率性能、热稳定性和电压保持率。具体而言,经过10次ALD循环涂覆的LLOs在0.1C下每循环的电压衰减率为0.9mV,可逆容量为272.8mAh/g,在1C下经过200次循环后的容量保持率为85%,这表明表面复合纳米结构在改善电化学性能方面的重要作用。这项工作为高性能LIBs阴极材料晶粒表面的复合纳米结构设计提供了新的见解。