Schoelmerich Markus O, Tschentscher Thomas, Bhat Shrikant, Bolme Cindy A, Cunningham Eric, Farla Robert, Galtier Eric, Gleason Arianna E, Harmand Marion, Inubushi Yuichi, Katagiri Kento, Miyanishi Kohei, Nagler Bob, Ozaki Norimasa, Preston Thomas R, Redmer Ronald, Smith Ray F, Tobase Tsubasa, Togashi Tadashi, Tracy Sally J, Umeda Yuhei, Wollenweber Lennart, Yabuuchi Toshinori, Zastrau Ulf, Appel Karen
European XFEL, Schenefeld, 22869, Germany.
Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany.
Sci Rep. 2020 Jun 23;10(1):10197. doi: 10.1038/s41598-020-66340-y.
SiO is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 M). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P4/mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood. Here, laser-induced shock compression experiments at the LCLS- and SACLA XFEL light-sources elucidate the high-pressure behavior of stishovite on the lattice-level under in situ conditions on the Hugoniot to pressures above 300 GPa. We find stishovite is still (meta-)stable at these conditions, and does not undergo any phase transitions. This contradicts static experiments showing structural transformations to the CaCl, α-PbO and pyrite-type structures. However, rate-limited kinetic hindrance may explain our observations. These results are important to our understanding into the validity of EOS data from nanosecond experiments for geophysical applications.
二氧化硅是行星体中最基本的成分之一,是类地行星地壳和地幔中主要矿物相的重要组成部分(1-10M)。深度大于300公里处的二氧化硅可能以金红石型高压多晶型斯石英(P4/mnm)的形式存在,其热力学稳定性对于理解行星内部的地震和动力学结构具有重要意义。此前通过静态和动态(冲击)压缩技术对斯石英进行的研究结果相互矛盾,晶格水平响应中观察到的差异仍未得到清晰理解。在此,利用直线加速器相干光源(LCLS)和日本兵库县的SPring-8 自由电子激光装置(SACLA)X射线自由电子激光光源进行的激光诱导冲击压缩实验,阐明了在原位条件下,在雨贡纽曲线上压力高于300吉帕时斯石英在晶格水平上的高压行为。我们发现斯石英在这些条件下仍然(亚)稳定,并未发生任何相变。这与显示向氯化钙型、α-氧化铅型和黄铁矿型结构转变的静态实验结果相矛盾。然而,速率受限的动力学阻碍可能解释我们的观察结果。这些结果对于我们理解纳秒实验获得的状态方程数据在地球物理应用中的有效性具有重要意义。