Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA.
Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA,
Dev Neurosci. 2020;42(1):59-71. doi: 10.1159/000507989. Epub 2020 Jun 24.
N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation.
N-甲基-D-天冬氨酸受体(NMDAR)通过影响细胞骨架组织和激酶信号转导来调节树突棘的结构可塑性。在发育中的神经系统中,NMDAR 的激活对于神经元迁移、神经突分化和细胞组织都是至关重要的。鉴于小电导钙激活钾通道(SK2/3)抑制 NMDAR 离子型信号转导,本研究强调了新生 SK 通道增强对成年皮质和海马组织的影响。通过在出生后第 2 天(P2)向小鼠脑皮层注射 SK2/3 激动剂(CyPPA)一次来实现新生 SK 通道的增强。当动物成年(P55)时,检查海马体和皮质以评估神经元成熟、分层和突触细胞骨架蛋白的分布。在 P2 处理的 P55 小鼠大脑中的神经元标志物免疫检测显示,在上皮质层(II-IV 层)和 CA1(海马体)中存在未成熟神经元。此外,由于成熟(NeuN+)和未成熟(Doublecortin+[DCX+])神经元在皮质层 II-IV 中的异位定位,导致皮质层细胞密度降低。同样,CA1 中 NeuN+神经元数量的减少伴随着未成熟 DCX+神经元数量的增加。神经元在上皮质和 CA1 中的异位定位导致神经元特异性细胞骨架蛋白的显著表达。与此一致,神经元突起的结构畸形和突触后密度的丧失表明突触后完整性在 SK2/3+大脑中受到损害。从这些结果中,我们推断,发育中大脑中的 SK 通道活性可能通过对细胞骨架形成的影响来影响神经元成熟。