Suppr超能文献

基于零空间的胎儿心电信号盲分离。

A Null Space-Based Blind Source Separation for Fetal Electrocardiogram Signals.

机构信息

Department of Electrical and Computer Engineering, University of Windsor, 401 Sunset Ave, Windsor N9B 3P4, ON, Canada.

出版信息

Sensors (Basel). 2020 Jun 22;20(12):3536. doi: 10.3390/s20123536.

Abstract

This paper presents a new non-invasive deterministic algorithm of extracting the fetal Electrocardiogram (FECG) signal based on a new null space idempotent transformation matrix (NSITM). The mixture matrix is used to compute the ITM. Then, the fetal ECG (FECG) and maternal ECG (MECG) signals are extracted from the null space of the ITM. Next, MECG and FECG peaks detection, control logic, and adaptive comb filter are used to remove the unwanted MECG component from the raw FECG signal, thus extracting a clean FECG signal. The visual results from Daisy and Physionet real databases indicate that the proposed algorithm is effective in extracting the FECG signal, which can be compared with principal component analysis (PCA), fast independent component analysis (FastICA), and parallel linear predictor (PLP) filter algorithms. Results from Physionet synthesized ECG data show considerable improvement in extraction performances over other algorithms used in this work, considering different additive signal-to-noise ratio (SNR) increasing from 0 dB to 12 dB, and considering different fetal-to-maternal SNR increasing from -30 dB to 0 dB. The FECG detection of the NSITM is evaluated using statistical measures and results show considerable improvement in the sensitivity (SE), the accuracy (ACC), and the positive predictive value (PPV), as compared with other algorithms. The study demonstrated that the NSITM is a feasible algorithm for FECG extraction.

摘要

本文提出了一种新的基于新的零空间幂等变换矩阵 (NSITM) 的提取胎儿心电图 (FECG) 信号的无创确定性算法。混合矩阵用于计算 ITM。然后,从 ITM 的零空间中提取胎儿心电图 (FECG) 和母体心电图 (MECG) 信号。接下来,使用 MECG 和 FECG 峰值检测、控制逻辑和自适应梳状滤波器从原始 FECG 信号中去除不需要的 MECG 分量,从而提取出干净的 FECG 信号。来自 Daisy 和 Physionet 真实数据库的可视化结果表明,所提出的算法有效地提取了 FECG 信号,可与主成分分析 (PCA)、快速独立成分分析 (FastICA) 和并行线性预测器 (PLP) 滤波器算法进行比较。Physionet 合成 ECG 数据的结果表明,与本工作中使用的其他算法相比,在不同的加性信噪比 (SNR) 从 0 dB 增加到 12 dB 以及不同的胎儿对母体 SNR 从-30 dB 增加到 0 dB 的情况下,提取性能有了相当大的提高。使用统计措施评估 NSITM 的 FECG 检测,结果表明与其他算法相比,灵敏度 (SE)、准确性 (ACC) 和阳性预测值 (PPV) 有了相当大的提高。该研究表明,NSITM 是一种可行的 FECG 提取算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7d/7348901/34ec90935482/sensors-20-03536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验