Suppr超能文献

Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity.

作者信息

Lee S C, Price M, Prystowsky M B, Deutsch C

机构信息

Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085.

出版信息

Am J Physiol. 1988 Feb;254(2 Pt 1):C286-96. doi: 10.1152/ajpcell.1988.254.2.C286.

Abstract

Regulatory volume decreased (RVD) in lymphocytes in response to hyptonically induced swelling is dependent on the membrane permeabilities of K+, Cl-, and H2O. We used electronic cell sizing, cell water determination, and the whole cell patch-clamp method to study these membrane permeabilities in the cloned mouse T-lymphocyte, L2. Quiescent L2 cells express low levels of a voltage-gated K+ channel and show no RVD at 25 degrees C. In contrast, L2 cells stimulated to proliferate with the growth factor interleukin 2 have increased K+ conductance and show RVD in response to hypotonicity. RVD in stimulated cells is blocked by quinine and verapamil at levels that also completely block the voltage-gated K+ conductance. Swollen, unstimulated L2 cells can be induced to shrink by addition of the monovalent cation ionophore gramicidin in the presence of impermeant extracellular organic cations; gramicidin also enhances the rate of RVD in stimulated cells. Additionally, the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocks this gramicidin-facilitated RVD. These results suggest that a minimum requisite Cl- permeability is present even in the unstimulated L2 cells, that a necessary and limiting K+ permeability determines the rate of RVD, and that this K+ permeability increases after growth-factor stimulation as predicted from the direct measurement of voltage-gated K+ conductance. The hydraulic permeability is approximately 70% greater in proliferating L2 cells than in quiescent cells. At 37 degrees C, some RVD occurs in unstimulated L2 cells, and stimulated cells show faster and more complete shrinkage. These results are discussed with respect to the underlying membrane permeabilities and their relation to stimulated cell proliferation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验