Suppr超能文献

利用机器学习减轻人工耳蜗中的混响和噪声影响。

USING MACHINE LEARNING TO MITIGATE THE EFFECTS OF REVERBERATION AND NOISE IN COCHLEAR IMPLANTS.

作者信息

Chu Kevin M, Throckmorton Chandra S, Collins Leslie M, Mainsah Boyla O

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC.

Department of Electrical and Computer Engineering, Duke University, Durham, NC.

出版信息

Proc Meet Acoust. 2018 May 7;33(1). doi: 10.1121/2.0000905. Epub 2018 Oct 8.

Abstract

In listening environments with room reverberation and background noise, cochlear implant (CI) users experience substantial difficulties in understanding speech. Because everyday environments have different combinations of reverberation and noise, there is a need to develop algorithms that can mitigate both effects to improve speech intelligibility. Desmond (2014) developed a machine learning approach to mitigate the adverse effects of late reverberant reflections of speech signals by using a classifier to detect and remove affected segments in CI pulse trains. This study aimed to investigate the robustness of the reverberation mitigation algorithm in environments with both reverberation and noise. Sentence recognition tests were conducted in normal hearing listeners using vocoded speech with unmitigated and mitigated reverberant-only or noisy reverberant speech signals, across different reverberation times and noise types. Improvements in speech intelligibility were observed in mitigated reverberant-only conditions. However, mixed results were obtained in the mitigated noisy reverberant conditions as a reduction in speech intelligibility was observed for noise types whose spectra were similar to that of anechoic speech. Based on these results, the focus of future work is to develop a context-dependent approach that activates different mitigation strategies for different acoustic environments.

摘要

在存在房间混响和背景噪声的聆听环境中,人工耳蜗(CI)使用者在理解语音方面会遇到很大困难。由于日常环境中混响和噪声的组合各不相同,因此需要开发能够减轻这两种影响以提高语音清晰度的算法。德斯蒙德(2014年)开发了一种机器学习方法,通过使用分类器检测并去除CI脉冲序列中受影响的部分,来减轻语音信号后期混响反射的不利影响。本研究旨在调查在同时存在混响和噪声的环境中混响减轻算法的稳健性。在正常听力的听众中进行了句子识别测试,使用了具有未减轻和减轻的仅混响或噪声混响语音信号的声码语音,涵盖不同的混响时间和噪声类型。在仅减轻混响的条件下观察到了语音清晰度的提高。然而,在减轻噪声混响的条件下得到了混合结果,因为对于频谱与无回声语音相似的噪声类型,观察到了语音清晰度的降低。基于这些结果,未来工作的重点是开发一种上下文相关的方法,针对不同的声学环境激活不同的减轻策略。

相似文献

本文引用的文献

1
Time-Frequency Masking in the Complex Domain for Speech Dereverberation and Denoising.复域中的时频掩蔽用于语音去混响和降噪
IEEE/ACM Trans Audio Speech Lang Process. 2017 Jul;25(7):1492-1501. doi: 10.1109/TASLP.2017.2696307. Epub 2017 Apr 20.
6
An invariant form for the prior probability in estimation problems.估计问题中先验概率的一种不变形式。
Proc R Soc Lond A Math Phys Sci. 1946;186(1007):453-61. doi: 10.1098/rspa.1946.0056.
9
Trends in cochlear implants.人工耳蜗植入的发展趋势。
Trends Amplif. 2004;8(1):1-34. doi: 10.1177/108471380400800102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验