Ravanidis Stylianos, Doxakis Epaminondas
Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.
Front Cell Dev Biol. 2020 Jun 4;8:372. doi: 10.3389/fcell.2020.00372. eCollection 2020.
The mitochondrial lifecycle comprises biogenesis, fusion and cristae remodeling, fission, and breakdown by the autophagosome. This cycle is essential for maintaining proper cellular function, and inhibition of any of these processes results in deterioration of bioenergetics and swift induction of apoptosis, particularly in energy-craving cells such as myocytes and neurons. Regulation of gene expression is a fundamental step in maintaining mitochondrial plasticity, mediated by (1) transcription factors that control the expression of mitochondrial mRNAs and (2) RNA-binding proteins (RBPs) that regulate mRNA splicing, stability, targeting to mitochondria, and translation. More recently, RBPs have been also shown to interact with proteins modulating the mitochondrial lifecycle. Importantly, misexpression or mutations in RBPs give rise to mitochondrial dysfunctions, and there is strong evidence to support that these mitochondrial impairments occur early in disease development, constituting leading causes of pathogenesis. This review presents key aspects of the molecular network of the disease-relevant RBPs, including transactive response DNA-binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and pumilio (PUM) that drive mitochondrial dysfunction in the nervous system.
线粒体生命周期包括生物发生、融合和嵴重塑、分裂以及被自噬体降解。这个循环对于维持细胞正常功能至关重要,抑制这些过程中的任何一个都会导致生物能量学恶化并迅速诱导细胞凋亡,尤其是在对能量需求较高的细胞如心肌细胞和神经元中。基因表达调控是维持线粒体可塑性的一个基本步骤,由(1)控制线粒体mRNA表达的转录因子和(2)调节mRNA剪接、稳定性、靶向线粒体和翻译的RNA结合蛋白(RBP)介导。最近,RBP也被证明与调节线粒体生命周期的蛋白质相互作用。重要的是,RBP的错误表达或突变会导致线粒体功能障碍,并且有强有力的证据支持这些线粒体损伤在疾病发展早期就会出现,是发病机制的主要原因。本综述介绍了与疾病相关的RBP分子网络的关键方面,包括在神经系统中导致线粒体功能障碍的反式激活应答DNA结合蛋白43(TDP43)、肉瘤融合蛋白(FUS)、T细胞胞内抗原1(TIA1)、TIA相关蛋白(TIAR)和 pumilio(PUM)。