Suppr超能文献

额颞叶痴呆发病机制中mRNP颗粒动力学的改变

Altered mRNP granule dynamics in FTLD pathogenesis.

作者信息

Bowden Hilary A, Dormann Dorothee

机构信息

Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.

BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.

出版信息

J Neurochem. 2016 Aug;138 Suppl 1:112-33. doi: 10.1111/jnc.13601. Epub 2016 Jun 15.

Abstract

In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.

摘要

在神经元中,RNA结合蛋白(RBPs)在转录后基因调控中发挥关键作用,例如可变剪接、mRNA在神经突中的定位以及突触刺激后的局部翻译。越来越多的证据表明,有缺陷或定位错误的RBPs——进而导致mRNA加工改变——会导致神经元功能障碍并引发神经退行性变,包括额颞叶痴呆和肌萎缩侧索硬化症。含有43 kDa的TAR DNA结合蛋白(TDP - 43)或肉瘤融合蛋白(FUS)的胞质RBP聚集体是这两种疾病的共同特征。越来越多的证据表明,翻译沉默的mRNP颗粒,如应激颗粒或运输颗粒,在这些RBP聚集体的形成中起重要作用。这些颗粒被认为是RBP聚集的“催化转化器”,通过提供高局部浓度的RBPs来实现。正如最近在体外实验中所显示的,含有所谓低复杂性结构域的RBPs在高蛋白质浓度下开始“固化”并最终聚集。在体内的mRNP颗粒中可能也会发生同样的情况,导致“固化”的颗粒失去其动态特性和履行生理功能的能力。这可能会导致应激反应紊乱、mRNA运输和局部翻译改变,以及病理性TDP - 43或FUS聚集体的形成,所有这些都可能导致神经元功能障碍和神经退行性变。在这里,我们讨论这些mRNP颗粒的一般功能特性,它们的动态性在额颞叶痴呆/肌萎缩侧索硬化症中可能如何被破坏,例如通过TDP - 43和FUS的功能丧失或获得,以及这可能如何导致RBP聚集体的形成和神经毒性。在这篇综述中,我们讨论动态的mRNP颗粒,如应激颗粒或神经元运输颗粒,如何可能转化为含有错误折叠的RNA结合蛋白(RBPs),如TDP - 43和FUS的病理性聚集体。RBPs中低复杂性结构域之间的异常相互作用可能导致动态mRNP颗粒固化并变得功能失调。这可能会导致应激反应紊乱、mRNA运输和局部翻译改变,以及RBP聚集,所有这些都可能导致神经元功能障碍和神经退行性变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验