García de la Torre Vanesa S, Majorel-Loulergue Clarisse, Rigaill Guillem J, Alfonso-González Dubiel, Soubigou-Taconnat Ludivine, Pillon Yohan, Barreau Louise, Thomine Sébastien, Fogliani Bruno, Burtet-Sarramegna Valérie, Merlot Sylvain
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
Institute of Exact and Applied Sciences (ISEA), Université de la Nouvelle-Calédonie, BP R4, Nouméa Cedex, 98851, New Caledonia.
New Phytol. 2021 Jan;229(2):994-1006. doi: 10.1111/nph.16775. Epub 2020 Aug 5.
The Anthropocene epoch is associated with the spreading of metals in the environment increasing oxidative and genotoxic stress on organisms. Interestingly, c. 520 plant species growing on metalliferous soils acquired the capacity to accumulate and tolerate a tremendous amount of nickel in their shoots. The wide phylogenetic distribution of these species suggests that nickel hyperaccumulation evolved multiple times independently. However, the exact nature of these mechanisms and whether they have been recruited convergently in distant species is not known. To address these questions, we have developed a cross-species RNA-Seq approach combining differential gene expression analysis and cluster of orthologous group annotation to identify genes linked to nickel hyperaccumulation in distant plant families. Our analysis reveals candidate orthologous genes encoding convergent function involved in nickel hyperaccumulation, including the biosynthesis of specialized metabolites and cell wall organization. Our data also point out that the high expression of IREG/Ferroportin transporters recurrently emerged as a mechanism involved in nickel hyperaccumulation in plants. We further provide genetic evidence in the hyperaccumulator Noccaea caerulescens for the role of the NcIREG2 transporter in nickel sequestration in vacuoles. Our results provide molecular tools to better understand the mechanisms of nickel hyperaccumulation and study their evolution in plants.
人类世与金属在环境中的扩散相关联,这增加了生物体的氧化应激和遗传毒性应激。有趣的是,生长在金属含量高的土壤上的约520种植物获得了在其地上部分积累和耐受大量镍元素的能力。这些物种广泛的系统发育分布表明镍超积累是多次独立进化而来的。然而,这些机制的确切性质以及它们是否在远缘物种中趋同进化尚不清楚。为了解决这些问题,我们开发了一种跨物种RNA测序方法,结合差异基因表达分析和直系同源群注释,以鉴定与远缘植物科中镍超积累相关的基因。我们的分析揭示了编码参与镍超积累的趋同功能的候选直系同源基因,包括特殊代谢产物的生物合成和细胞壁组织。我们的数据还指出,IREG/铁转运蛋白转运体的高表达反复出现,是植物镍超积累的一种机制。我们进一步为超积累植物天蓝遏蓝菜中NcIREG2转运体在液泡镍螯合中的作用提供了遗传学证据。我们的结果提供了分子工具,以更好地理解镍超积累的机制,并研究它们在植物中的进化。