Dijoux Julie, Gigante Sarah, Lecellier Gael, Guentas Linda, Burtet-Sarramegna Valérie
Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851.
Microbiome. 2025 May 4;13(1):110. doi: 10.1186/s40168-025-02098-7.
In New Caledonia, nearly 2000 plant species grow on ultramafic substrates, which contain prominent levels of heavy metals and are deficient in essential plant nutrients. To colonize these habitats, such plants, known as metallophytes, have developed various adaptive behaviors towards metals (exclusion, tolerance, or hyperaccumulation). Ultramafic substrates also host many unique microorganisms, which are adapted to metallic environments and capable of boosting plant growth while assisting plants in acquiring essential micronutrients. Hence, plant-microbiota interactions play a key role in adapting to environmental stress. Here, we hypothesised that microbial associations in the different aboveground and underground compartments of metallophytes could be associated to their metal hyperaccumulation or exclusion phenotypes. This hypothesis was tested using a systematic comparative metabarcoding approach on the different compartments of two New Caledonian metallophytes belonging to the same genus and living in sympatry on ultramafic substrates: Psychotria gabriellae, a nickel-hyperaccumulator (Ni-HA), and Psychotria semperflorens, the related non-accumulator (nA) species.
The study of the diversity and specificity of fungal amplicon sequence variants (ASVs) reveals a structuring of fungal communities at both the plant phenotype and compartment levels. In contrast, the structure of bacterial communities was primarily shaped by the belowground compartments. Additionally, we observed a lower diversity in the bacterial communities of the aboveground compartments of each species. For each plant species, we highlighted a distinct global microbial signature (biomarkers), as well as compartment-specific microbial associations.
To our knowledge, this study is the first to systematically compare the microbiomes associated with different compartments of New Caledonian metallophyte species growing on the same substrate and under identical environmental conditions but exhibiting different adaptive phenotypes. Our results reveal distinct microbial biomarkers between the Ni-hyperaccumulator and non-accumulator Psychotria species. Most of the highlighted biomarkers are abundant in various plants under metal stress and may contribute to improving the phytoextraction or phytostabilization processes. They are also known to tolerate heavy metals and enhance metal stress tolerance in plants. The present findings highlight that the microbial perspective is essential for better understanding the mechanisms of hyperaccumulation and exclusion at the whole-plant level. Video Abstract.
在新喀里多尼亚,近2000种植物生长在超镁铁质基质上,这种基质含有大量重金属,且缺乏植物必需的养分。为了在这些栖息地定殖,这类被称为金属植物的植物已经形成了多种针对金属的适应性行为(排斥、耐受或超积累)。超镁铁质基质还承载着许多独特的微生物,这些微生物适应金属环境,能够促进植物生长,同时帮助植物获取必需的微量营养素。因此,植物与微生物群的相互作用在适应环境压力中起着关键作用。在这里,我们假设金属植物地上和地下不同部分的微生物群落可能与其金属超积累或排斥表型有关。我们使用系统的比较代谢条形码方法,对生长在超镁铁质基质上同域分布的同一属的两种新喀里多尼亚金属植物的不同部分进行了测试,以验证这一假设:加氏九节,一种镍超积累植物(Ni-HA),以及相关的非积累植物(nA)物种——四季九节。
对真菌扩增子序列变体(ASV)的多样性和特异性研究揭示了真菌群落在植物表型和部分水平上的结构。相比之下,细菌群落的结构主要由地下部分塑造。此外,我们观察到每个物种地上部分的细菌群落多样性较低。对于每种植物,我们突出了独特的整体微生物特征(生物标志物)以及部分特异性微生物群落。
据我们所知,本研究首次系统地比较了生长在同一基质上、处于相同环境条件下但表现出不同适应表型的新喀里多尼亚金属植物物种不同部分相关的微生物组。我们的结果揭示了镍超积累植物和非积累植物九节属物种之间不同的微生物生物标志物。大多数突出的生物标志物在各种受金属胁迫的植物中含量丰富,可能有助于改善植物提取或植物稳定过程。它们也已知能够耐受重金属并增强植物对金属胁迫的耐受性。目前的研究结果突出表明,从微生物角度对于更好地理解全株水平上的超积累和排斥机制至关重要。视频摘要。