State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
Co-Innovation Center for Textile Industry, Donghua University, Shanghai, 201620, P. R. China.
Small. 2020 Jul;16(30):e2001775. doi: 10.1002/smll.202001775. Epub 2020 Jun 25.
Electrocatalysis for nitrate reduction reaction (NRR) has recently been recognized as a promising technology to convert nitrate to nitrogen. Catalyst support plays an important role in electrocatalytic process. Although porous carbon and metal oxides are considered as common supports for metal-based catalysts, fabrication of such architecture with high electric conductivity, uniform dispersion of nanoparticles, and long-term catalytic stability through a simple and feasible approach still remains a significant challenge. Herein, inspired by the signal transfer mode of dendritic cell, an all-carbon dendritic cell-like (DCL) architecture comprising mesoporous carbon spheres (MCS) connected by tethered carbon nanotubes (CNTs) with CuPd nanoparticles dispersed throughout (CuPd@DCL-MCS/CNTs) is reported. An impressive removal capacity as high as 22 500 mg N g CuPd (≈12 times superior to Fe-based catalysts), high nitrate conversion (>95%) and nitrogen selectivity (>95%) are achieved under a low initial concentration of nitrate (100 mg L ) when using an optimized-NRR electrocatalyst (4CuPd@DCL-MCS/CNTs). Remarkably, nitrate conversion and nitrogen selectivity are both close to 100% in an ultralow concentration of 10 mg L , meeting drinking water standard. The present work not only provides high electrocatalytic performance for NRR but also introduces new inspiration for the preparation of other DCL-based architectures.
电催化还原硝酸盐反应(NRR)最近被认为是一种将硝酸盐转化为氮气的有前途的技术。催化剂载体在电催化过程中起着重要作用。虽然多孔碳和金属氧化物被认为是金属基催化剂的常见载体,但通过简单可行的方法制造具有高导电性、纳米颗粒均匀分散和长期催化稳定性的这种结构仍然是一个重大挑战。在本文中,受树突状细胞信号传递模式的启发,报道了一种由介孔碳球(MCS)通过连接的碳纳米管(CNTs)连接而成的全碳树突状细胞样(DCL)结构,其中分散有 CuPd 纳米颗粒(CuPd@DCL-MCS/CNTs)。在低初始硝酸盐浓度(100 mg L )下,使用优化的-NRR 电催化剂(4CuPd@DCL-MCS/CNTs)时,可实现高达 22500 mg N g CuPd(≈比 Fe 基催化剂高 12 倍)的去除容量、高硝酸盐转化率(>95%)和氮气选择性(>95%)。值得注意的是,硝酸盐转化率和氮气选择性在超低浓度 10 mg L 时均接近 100%,达到饮用水标准。本工作不仅为 NRR 提供了高电催化性能,而且为其他 DCL 基结构的制备提供了新的启示。