Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands.
Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands.
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):17229-17233. doi: 10.1002/anie.202006381. Epub 2020 Aug 18.
Understanding cell/material interactions is essential to design functional cell-responsive materials. While the scientific literature abounds with formulations of biomimetic materials, only a fraction of them focused on mechanisms of the molecular interactions between cells and material. To provide new knowledge on the strategies for materials/cell recognition and binding, supramolecular benzene-1,3,5-tricarboxamide copolymers bearing benzoxaborole moieties are anchored on the surface of human erythrocytes via benzoxaborole/sialic-acid binding. This interaction based on both dynamic covalent and non-covalent chemistries is visualized in real time by means of total internal reflection fluorescence microscopy. Exploiting this imaging method, we observe that the functional copolymers specifically interact with the cell surface. An optimal fiber affinity towards the cells as a function of benzoxaborole concentration demonstrates the crucial role of multivalency in these cell/material interactions.
理解细胞/材料相互作用对于设计功能性的细胞响应材料至关重要。虽然科学文献中充斥着仿生材料的配方,但只有一小部分关注细胞与材料之间分子相互作用的机制。为了提供关于材料/细胞识别和结合策略的新知识,通过苯并硼酸/唾液酸结合,将带有苯并恶唑基部分的超分子苯-1,3,5-三甲酰胺共聚物锚定在人红细胞表面。这种基于动态共价和非共价化学的相互作用通过全内反射荧光显微镜实时可视化。利用这种成像方法,我们观察到功能共聚物与细胞表面特异性相互作用。作为苯并硼酸浓度函数的最优纤维对细胞的亲和力表明多价性在这些细胞/材料相互作用中起着关键作用。