Suppr超能文献

γ-氨基丁酸(GABA)在星形胶质细胞中的广泛代谢维持了哺乳动物大脑皮层中的谷氨酰胺合成。

Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex.

作者信息

Andersen Jens V, Jakobsen Emil, Westi Emil W, Lie Maria E K, Voss Caroline M, Aldana Blanca I, Schousboe Arne, Wellendorph Petrine, Bak Lasse K, Pinborg Lars H, Waagepetersen Helle S

机构信息

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Epilepsy Clinic and Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark.

出版信息

Glia. 2020 Dec;68(12):2601-2612. doi: 10.1002/glia.23872. Epub 2020 Jun 25.

Abstract

Synaptic transmission is closely linked to brain energy and neurotransmitter metabolism. However, the extent of brain metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and the relative metabolic contributions of neurons and astrocytes, are yet unknown. The present study was designed to investigate the functional significance of brain GABA metabolism using isolated mouse cerebral cortical slices and slices of neurosurgically resected neocortical human tissue of the temporal lobe. By using dynamic isotope labeling, with [ N]GABA and [U- C]GABA as metabolic substrates, we show that both mouse and human brain slices exhibit a large capacity for GABA metabolism. Both the nitrogen and the carbon backbone of GABA strongly support glutamine synthesis, particularly in the human cerebral cortex, indicative of active astrocytic GABA metabolism. This was further substantiated by pharmacological inhibition of the primary astrocytic GABA transporter subtype 3 (GAT3), by (S)-SNAP-5114 or 1-benzyl-5-chloro-2,3-dihydro-1H-indole-2,3-dione (compound 34), leading to significant reductions in oxidative GABA carbon metabolism. Interestingly, this was not the case when tiagabine was used to specifically inhibit GAT1, which is predominantly found on neurons. Finally, we show that acute GABA exposure does not directly stimulate glycolytic activity nor oxidative metabolism in cultured astrocytes, but can be used as an additional substrate to enhance uncoupled respiration. These results clearly show that GABA is actively metabolized in astrocytes, particularly for the synthesis of glutamine, and challenge the current view that synaptic GABA homeostasis is maintained primarily by presynaptic recycling.

摘要

突触传递与脑能量及神经递质代谢密切相关。然而,抑制性神经递质γ-氨基丁酸(GABA)在脑内的代谢程度,以及神经元和星形胶质细胞的相对代谢贡献,目前尚不清楚。本研究旨在利用分离的小鼠大脑皮质切片和神经外科手术切除的颞叶新皮质人类组织切片,研究脑内GABA代谢的功能意义。通过使用动态同位素标记,以[ N]GABA和[U- C]GABA作为代谢底物,我们发现小鼠和人类脑切片均具有强大的GABA代谢能力。GABA的氮和碳骨架均有力地支持谷氨酰胺的合成,尤其是在人类大脑皮质中,这表明星形胶质细胞中存在活跃的GABA代谢。通过(S)-SNAP-5114或1-苄基-5-氯-2,3-二氢-1H-吲哚-2,3-二酮(化合物34)对主要的星形胶质细胞GABA转运体亚型3(GAT3)进行药理学抑制,进一步证实了这一点,这导致氧化型GABA碳代谢显著降低。有趣的是,当使用噻加宾特异性抑制主要在神经元上发现的GAT1时,情况并非如此。最后,我们表明急性GABA暴露不会直接刺激培养的星形胶质细胞中的糖酵解活性或氧化代谢,但可作为额外的底物来增强解偶联呼吸。这些结果清楚地表明,GABA在星形胶质细胞中被积极代谢,特别是用于谷氨酰胺的合成,并挑战了目前认为突触GABA稳态主要通过突触前再循环维持的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验