Suppr超能文献

具有未知迟滞的大规模系统的事件触发输出反馈控制。

Event-Triggered Output-Feedback Control for Large-Scale Systems With Unknown Hysteresis.

出版信息

IEEE Trans Cybern. 2021 Nov;51(11):5236-5247. doi: 10.1109/TCYB.2020.2997943. Epub 2021 Nov 9.

Abstract

This article focuses on the event-triggered-based adaptive neural-network (NN) control problem for nonlinear large-scale systems (LSSs) in the presence of full-state constraints and unknown hysteresis. The characteristic of radial basis function NNs is utilized to construct a state observer and address the algebraic loop problem. To reduce the communication burden and the signal transmission frequency, the event-triggered mechanism and the encoding-decoding strategy are proposed with the help of a backstepping control technique. To encode and decode the event-triggering control signal, a one-bit signal transmission strategy is adopted to consume less communication bandwidth. Then, by estimating the unknown constants in the differential equation of unknown hysteresis, the effect caused by unknown backlash-like hysteresis is compensated for nonlinear LSSs. Moreover, the violation of full-state constraints is prevented based on the barrier Lyapunov functions and all signals of the closed-loop system are proven to be semiglobally ultimately uniformly bounded. Finally, two simulation examples are given to illustrate the effectiveness of the developed strategy.

摘要

本文针对具有全状态约束和未知迟滞的非线性大系统(LSS),研究了基于事件触发的自适应神经网络(NN)控制问题。利用径向基函数神经网络的特性,构建了一个状态观测器,并解决了代数环问题。为了降低通信负担和信号传输频率,借助反步控制技术,提出了事件触发机制和编解码策略。为了对事件触发控制信号进行编码和解码,采用了一位信号传输策略,以消耗更少的通信带宽。然后,通过估计未知迟滞微分方程中的未知常数,补偿了非线性 LSS 中的未知回滞似迟滞效应。此外,基于障碍李雅普诺夫函数防止了全状态约束的违反,并且证明了闭环系统的所有信号都是半全局最终一致有界的。最后,给出了两个仿真示例,以验证所提出策略的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验