Strategic Policy Cell at Ghent University Hospital, Ghent, Belgium.
Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium.
PLoS One. 2020 Jun 25;15(6):e0235117. doi: 10.1371/journal.pone.0235117. eCollection 2020.
Early prediction of in-hospital mortality can improve patient outcome. Current prediction models for in-hospital mortality focus mainly on specific pathologies. Structured pathology data is hospital-wide readily available and is primarily used for e.g. financing purposes. We aim to build a predictive model at admission using the International Classification of Diseases (ICD) codes as predictors and investigate the effect of the self-evident DNR ("Do Not Resuscitate") diagnosis codes and palliative care codes. We compare the models using ICD-10-CM codes with Risk of Mortality (RoM) and Charlson Comorbidity Index (CCI) as predictors using the Random Forests modeling approach. We use the Present on Admission flag to distinguish which diagnoses are present on admission. The study is performed in a single center (Ghent University Hospital) with the inclusion of 36 368 patients, all discharged in 2017. Our model at admission using ICD-10-CM codes (AUCROC = 0.9477) outperforms the model using RoM (AUCROC = 0.8797 and CCI (AUCROC = 0.7435). We confirmed that DNR and palliative care codes have a strong impact on the model resulting in a decrease of 7% for the ICD model (AUCROC = 0.8791) at admission. We therefore conclude that a model with a sufficient predictive performance can be derived from structured pathology data, and if real-time available, can serve as a prerequisite to develop a practical clinical decision support system for physicians.
早期预测院内死亡率可以改善患者的预后。目前用于预测院内死亡率的模型主要集中在特定的病理上。结构化的病理数据在医院范围内广泛可用,主要用于例如融资目的。我们的目的是使用国际疾病分类(ICD)代码作为预测因子,在入院时建立一个预测模型,并研究明显的 DNR(“不复苏”)诊断代码和姑息治疗代码的影响。我们使用随机森林建模方法,比较了使用 ICD-10-CM 代码的模型与风险死亡率(RoM)和 Charlson 合并症指数(CCI)作为预测因子的模型。我们使用入院时存在标志来区分哪些诊断是入院时存在的。该研究在一个单一中心(根特大学医院)进行,纳入了 2017 年所有出院的 36368 名患者。我们使用 ICD-10-CM 代码的入院模型(AUCROC=0.9477)优于使用 RoM(AUCROC=0.8797 和 CCI(AUCROC=0.7435)的模型。我们证实,DNR 和姑息治疗代码对模型有很大影响,使入院时的 ICD 模型(AUCROC=0.8791)降低了 7%。因此,我们得出结论,一个具有足够预测性能的模型可以从结构化的病理数据中得出,如果实时可用,可以作为开发医生实用临床决策支持系统的前提。