Zeng Qi, Li Qi, Sun Di, Zheng Mingming
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China.
Front Bioeng Biotechnol. 2020 Jun 10;8:565. doi: 10.3389/fbioe.2020.00565. eCollection 2020.
The industrial exploitation of protease is limited owing to its sensitivity to environmental factors and autolysis during biocatalytic processes. In the present study, the alcalase microarray (, alcalase@HMSS-NH-Metal) based on different metal ions modified hollow mesoporous silica spheres (HMSS-NH-Metal) was successfully developed a facile approach. Among the alcalase@HMSS-NH-Metal (Ca, Zn, Fe, Cu), the alcalase@HMSS-NH-Fe revealed the best immobilization efficiency and enzymatic properties. This tailor-made nanocomposite immobilized alcalase on a surface-bound network of amino-metal complex bearing protein-modifiable sites metal-protein affinity. The coordination interaction between metal ion and alcalase advantageously changed the secondary structure of enzyme, thus significantly enhanced the bioactivities and thermostability of alcalase. The as-prepared alcalase@HMSS-NH-Fe exhibited excellent loading capacity (227.8 ± 23.7 mg/g) and proteolytic activity. Compared to free form, the amidase activity of alcalase microarray increased by 5.3-fold, the apparent kinetic constant V/K of alcalase@HMSS-NH-Fe (15.6 min) was 1.9-fold higher than that of free alcalase, and the biocatalysis efficiency increased by 2.1-fold for bovine serum albumin (BSA) digestion. Moreover, this particular immobilization strategy efficiently reduced the bioactivities losses of alcalase caused by enzyme leaking and autolysis during the catalytic process. The alcalase microarray still retained 70.7 ± 3.7% of the initial activity after 10 cycles of successive reuse. Overall, this study established a promising strategy to overcome disadvantages posed by free alcalase, which provided new expectations for the application of alcalase in sustainable and efficient proteolysis.
由于蛋白酶在生物催化过程中对环境因素敏感且易发生自溶,其工业开发受到限制。在本研究中,基于不同金属离子修饰的中空介孔二氧化硅球(HMSS-NH-Metal)成功开发了一种简便方法制备碱性蛋白酶微阵列(碱性蛋白酶@HMSS-NH-Metal)。在碱性蛋白酶@HMSS-NH-Metal(钙、锌、铁、铜)中,碱性蛋白酶@HMSS-NH-Fe表现出最佳的固定化效率和酶学性质。这种定制的纳米复合材料通过金属-蛋白质亲和力将碱性蛋白酶固定在带有蛋白质可修饰位点的表面结合氨基金属络合物网络上。金属离子与碱性蛋白酶之间的配位相互作用有利地改变了酶的二级结构,从而显著提高了碱性蛋白酶的生物活性和热稳定性。所制备的碱性蛋白酶@HMSS-NH-Fe表现出优异的负载能力(227.8±23.7 mg/g)和蛋白水解活性。与游离形式相比,碱性蛋白酶微阵列的酰胺酶活性提高了5.3倍,碱性蛋白酶@HMSS-NH-Fe的表观动力学常数V/K(15.6分钟)比游离碱性蛋白酶高1.9倍,对牛血清白蛋白(BSA)消化的生物催化效率提高了2.1倍。此外,这种特殊的固定化策略有效减少了催化过程中因酶泄漏和自溶导致的碱性蛋白酶生物活性损失。经过10次连续重复使用后,碱性蛋白酶微阵列仍保留了70.7±3.7%的初始活性。总体而言,本研究建立了一种有前景的策略来克服游离碱性蛋白酶的缺点,为碱性蛋白酶在可持续和高效蛋白水解中的应用提供了新的期望。