Cubuk Jasmine, Alston Jhullian J, Incicco J Jeremías, Singh Sukrit, Stuchell-Brereton Melissa D, Ward Michael D, Zimmerman Maxwell I, Vithani Neha, Griffith Daniel, Wagoner Jason A, Bowman Gregory R, Hall Kathleen B, Soranno Andrea, Holehouse Alex S
bioRxiv. 2020 Dec 21:2020.06.17.158121. doi: 10.1101/2020.06.17.158121.
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)核衣壳(N)蛋白是一种丰富的RNA结合蛋白,对病毒基因组包装至关重要,但该过程背后的分子细节仍知之甚少。在这里,我们将单分子光谱与全原子模拟相结合,以揭示有助于N蛋白功能的分子细节。N蛋白包含三个动态无序区域,其中存在假定的瞬时螺旋结合基序。两个折叠结构域之间的相互作用极小,因此全长N蛋白是一种灵活的多价RNA结合蛋白。当与RNA混合时,N蛋白也会发生液-液相分离,并且聚合物理论预测,驱动相分离的相同多价相互作用也会导致RNA压缩。我们提供了一个简单的对称破缺模型,该模型提供了一条合理的途径,通过该途径单基因组凝聚优先于相分离发生,这表明相分离为关键的纳米级相互作用提供了一种便捷的宏观读数。