Gao Yunpeng, Liu Shujuan, Wang Yunsong, Zhao Pengcheng, Li Kexin, He Jiaxin, Liu Shaoqin
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China; Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, PR China.
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China; Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, PR China.
J Colloid Interface Sci. 2020 Nov 1;579:177-185. doi: 10.1016/j.jcis.2020.06.018. Epub 2020 Jun 6.
A direct Z scheme g-CN/BiWO heterojunctions with enhanced photocatalytic performances were successfully prepared through nitrogen defect mediated method. HRTEM analyses illustrate BiWO nanoparticles are closely bonded with the g-CN-0.05 nanosheets to form the g-CN-0.05/BiWO heterogeneous structures. An outstanding visible light absorption ability is shown in the g-CN-0.05/BiWO hybrid, which combines both the light absorption advantages of g-CN-0.05 and BiWO together. In comparison with other photocatalysts the nitrogen defect mediated g-CN-0.05/BiWO hybrid shows the best photocatalytic properties, whose degradation efficiency can reach 83%. PL results indicate that an obvious larger amount of ·OH radical is produced on the g-CN-0.05/BiWO surface in the photocatalytic process. In the nitrogen defect mediated g-CN-0.05/BiWO the binding energies of C and N shift positively to the larger binding energy and the Bi, W and O elements shift negatively compared with that of the pristine g-CN-0.05 and BiWO. The MS results show the g-CN-0.05 has a more negative E than that of BiWO. All the experimental results support the direct Z scheme charge transfer mechanism proposed in the g-CN-0.05/BiWO photocatalyst. The developing of direct Z scheme g-CN-0.05/BiWO hybrid with excellent photocatalytic performance through defect mediated method shows great potential for more photocatalytic fields.
通过氮缺陷介导法成功制备了具有增强光催化性能的直接Z型g-CN/BiWO异质结。高分辨透射电子显微镜(HRTEM)分析表明,BiWO纳米颗粒与g-CN-0.05纳米片紧密结合,形成g-CN-0.05/BiWO异质结构。g-CN-0.05/BiWO复合材料表现出出色的可见光吸收能力,它结合了g-CN-0.05和BiWO两者的光吸收优势。与其他光催化剂相比,氮缺陷介导的g-CN-0.05/BiWO复合材料表现出最佳的光催化性能,其降解效率可达83%。光致发光(PL)结果表明,在光催化过程中,g-CN-0.05/BiWO表面产生了明显更多的·OH自由基。在氮缺陷介导的g-CN-0.05/BiWO中,与原始的g-CN-0.05和BiWO相比,C和N的结合能正向移动到更大的结合能,而Bi、W和O元素则负向移动。质谱(MS)结果表明,g-CN-0.05的电子亲和势(E)比BiWO更负。所有实验结果都支持g-CN-0.05/BiWO光催化剂中提出的直接Z型电荷转移机制。通过缺陷介导法开发具有优异光催化性能的直接Z型g-CN-0.05/BiWO复合材料在更多光催化领域显示出巨大潜力。