Sadeghi Sadra, Bahmani Jalali Houman, Srivastava Shashi Bhushan, Melikov Rustamzhon, Baylam Isinsu, Sennaroglu Alphan, Nizamoglu Sedat
Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey.
Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey.
iScience. 2020 Jul 24;23(7):101272. doi: 10.1016/j.isci.2020.101272. Epub 2020 Jun 15.
Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells. The optimized QD-LSCs showed an optical quantum efficiency of 37% and an internal concentration factor of 4.7 for a 10 × 10-cm device area under solar illumination, which is comparable with the state-of-the-art LSCs based on cadmium-containing QDs and lead-containing perovskites. Synthesis of the copper-doped InP/ZnSe QDs in gram-scale and large-area deposition (3,000 cm) onto commercial window glasses via doctor-blade technique showed their scalability for mass production. These results position InP-based QDs as a promising alternative for efficient solar energy harvesting.
胶体量子点(QDs)是用于发光太阳能聚光器(LSCs)的有前途的构建块。为了广泛应用,它们需要同时满足无毒材料成分、低再吸收、高光致发光量子产率和大规模生产的要求。在此,对羧酸锌钝化的InP核进行铜掺杂以及对ZnSe壳进行纳米工程处理,使得量子点在器件中的量子效率超过80%,其光谱发射轮廓与硅太阳能电池的光响应良好匹配。在太阳光照下,对于10×10平方厘米的器件面积,优化后的量子点发光太阳能聚光器(QD-LSCs)的光学量子效率为37%,内部聚光因子为4.7,这与基于含镉量子点和含铅钙钛矿的最先进的发光太阳能聚光器相当。通过刮刀法在商业窗玻璃上进行克级规模的铜掺杂InP/ZnSe量子点的合成以及大面积沉积(3000平方厘米),表明了它们在大规模生产方面的可扩展性。这些结果使基于InP的量子点成为高效太阳能收集的有前途的替代方案。