Durak Özce, Kulak Harun, Kavak Safiyye, Polat H Mert, Keskin Seda, Uzun Alper
Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey.
Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey.
J Phys Condens Matter. 2020 Sep 3;32(48). doi: 10.1088/1361-648X/aba06c.
In this work, we incorporated an ionic liquid (IL), 1--butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO]) into two different metal organic frameworks (MOFs), UiO-66, and its amino-functionalized counterpart, NH-UiO-66, to investigate the effects of ligand-functionalization on the thermal stability limits of IL/MOF composites. The as-synthesized IL/MOF composites were characterized in detail by combining x-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, x-ray fluorescence, infrared spectroscopies (FTIR), and their thermal stability limits were determined by thermogravimetric analysis (TGA). Characterization data confirmed the successful incorporation of the IL into each MOF and indicated the presence of direct interactions between them. A comparison of the interactions in [BMIM][MeSO]-incorporated UiO-66 and NH-UiO-66 with those in their 1--butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF])-incorporated counterparts showed that the hydrophilic IL, [BMIM][MeSO], interacts with the 1,4-benzenedicarboxylate (BDC) ligand of the UiO-66, while the hydrophobic IL, [BMIM][PF], is interacting with the joints where zirconium metal cluster coordinates with BDC ligand. The TGA data demonstrated that the composite with the ligand-functionalized MOF, NH-UiO-66, exhibited a lower percentage decrease in the maximum tolerable temperature compared to those of IL/UiO-66 composites. Moreover, it is discovered that when the IL is hydrophilic, its hydrogen bonding ability can be utilized to designate an interaction site on MOF's ligand structure, leads to a lower reduction in thermal stability limits. These results provide insights for the rational design of IL/MOF composites and contribute towards the complete elucidation of structural factors controlling the thermal stability.
在这项工作中,我们将离子液体(IL)1-丁基-3-甲基咪唑鎓甲基硫酸盐([BMIM][MeSO])掺入两种不同的金属有机框架(MOF),UiO-66及其氨基官能化对应物NH-UiO-66中,以研究配体官能化对IL/MOF复合材料热稳定性极限的影响。通过结合X射线衍射、扫描电子显微镜、布鲁诺尔-埃米特-泰勒分析、X射线荧光、红外光谱(FTIR)对合成的IL/MOF复合材料进行了详细表征,并通过热重分析(TGA)确定了它们的热稳定性极限。表征数据证实了IL成功掺入每个MOF,并表明它们之间存在直接相互作用。将掺入[BMIM][MeSO]的UiO-66和NH-UiO-66中的相互作用与其掺入1-丁基-3-甲基咪唑鎓六氟磷酸盐([BMIM][PF])的对应物中的相互作用进行比较,结果表明亲水性IL [BMIM][MeSO]与UiO-66的1,4-苯二甲酸酯(BDC)配体相互作用,而疏水性IL [BMIM][PF]与锆金属簇与BDC配体配位的节点相互作用。TGA数据表明,与IL/UiO-66复合材料相比,具有配体官能化MOF的NH-UiO-66复合材料在最大耐受温度下的降低百分比更低。此外,发现当IL为亲水性时,其氢键能力可用于在MOF的配体结构上指定一个相互作用位点,导致热稳定性极限的降低较小。这些结果为IL/MOF复合材料的合理设计提供了见解,并有助于全面阐明控制热稳定性的结构因素。