Gibbs H Lisle, Sanz Libia, Pérez Alicia, Ochoa Alexander, Hassinger Alyssa T B, Holding Matthew L, Calvete Juan J
Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA.
Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain.
Mol Ecol. 2020 Aug;29(15):2871-2888. doi: 10.1111/mec.15529. Epub 2020 Jul 17.
Understanding how interspecific interactions mould the molecular basis of adaptations in coevolving species is a long-sought goal of evolutionary biology. Venom in predators and venom resistance proteins in prey are coevolving molecular phenotypes, and while venoms are highly complex mixtures it is unclear if prey respond with equally complex resistance traits. Here, we use a novel molecular methodology based on protein affinity columns to capture and identify candidate blood serum resistance proteins ("venom interactive proteins" [VIPs]) in California Ground Squirrels (Otospermophilus beecheyi) that interact with venom proteins from their main predator, Northern Pacific Rattlesnakes (Crotalus o. oreganus). This assay showed that serum-based resistance is both population- and species-specific, with serum proteins from ground squirrels showing higher binding affinities for venom proteins of local snakes compared to allopatric individuals. Venom protein specificity assays identified numerous and diverse candidate prey resistance VIPs but also potential targets of venom in prey tissues. Many specific VIPs bind to multiple snake venom proteins and, conversely, single venom proteins bind multiple VIPs, demonstrating that a portion of the squirrel blood serum "resistome" involves broad-based inhibition of nonself proteins and suggests that resistance involves a toxin scavenging mechanism. Analyses of rates of evolution of VIP protein homologues in related mammals show that most of these proteins evolve under purifying selection possibly due to molecular constraints that limit the evolutionary responses of prey to rapidly evolving snake venom proteins. Our method represents a general approach to identify specific proteins involved in co-evolutionary interactions between species at the molecular level.
理解种间相互作用如何塑造共同进化物种适应的分子基础,是进化生物学长期追求的目标。捕食者的毒液和猎物中的抗毒蛋白是共同进化的分子表型,虽然毒液是高度复杂的混合物,但尚不清楚猎物是否会以同样复杂的抗性特征做出反应。在这里,我们使用一种基于蛋白质亲和柱的新型分子方法,来捕获和鉴定加利福尼亚地松鼠(Otospermophilus beecheyi)中与主要捕食者北太平洋响尾蛇(Crotalus o. oreganus)的毒液蛋白相互作用的候选血清抗性蛋白(“毒液相互作用蛋白”[VIPs])。该分析表明,基于血清的抗性具有种群特异性和物种特异性,与异域个体相比,地松鼠的血清蛋白对当地蛇的毒液蛋白表现出更高的结合亲和力。毒液蛋白特异性分析鉴定出了众多不同的候选猎物抗性VIPs,但也发现了猎物组织中毒液的潜在靶点。许多特定的VIPs与多种蛇毒蛋白结合,反之,单一的蛇毒蛋白也能结合多种VIPs,这表明松鼠血清“抗性组”的一部分涉及对非自身蛋白的广泛抑制,也表明抗性涉及一种毒素清除机制。对相关哺乳动物中VIP蛋白同源物进化速率的分析表明,这些蛋白中的大多数在纯化选择下进化,这可能是由于分子限制限制了猎物对快速进化的蛇毒蛋白的进化反应。我们的方法代表了一种在分子水平上识别参与物种间共同进化相互作用的特定蛋白质的通用方法。