Suppr超能文献

高压毒素“滚动”:静电排斥作为蟒蛇科蛇类的一种动态毒液抵抗特征。

High-Voltage Toxin'Roll: Electrostatic Charge Repulsion as a Dynamic Venom Resistance Trait in Pythonid Snakes.

机构信息

Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.

Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.

出版信息

Toxins (Basel). 2024 Apr 4;16(4):176. doi: 10.3390/toxins16040176.

Abstract

The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by (cobra) species (which occurs across Africa and Asia). The small African species retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral genus, conferring resistance to sympatric venoms. This differed from the giant African species , which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric species. In contrast, the two Asian species (small) and (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus (King Cobras) in Asia. All these terrestrial species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric species to consider as prey; and the terrestrial Australian species which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.

摘要

捕食者和猎物之间的进化相互作用极大地塑造了蛇毒的发展,这是制服猎物的关键适应。这种军备竞赛刺激了毒液成分的多样化,以及在毒蛇的猎物和捕食者中相应出现的抵抗机制。我们的研究调查了蟒蛇毒液抵抗的分子基础,重点关注静电排斥作为抵抗与突触后烟碱型乙酰胆碱受体α1 亚基结合的α-神经毒素的防御机制。通过对来自各种蟒蛇物种的正构位序列进行系统发育和生物活性分析,我们探讨了赋予静电排斥抵抗性的氨基酸取代的普遍性和进化,这些取代最初是为了应对来自非洲和亚洲的(眼镜蛇)物种的捕食压力而进化的。小型非洲物种 保留了祖先属的两个赋予抵抗性的赖氨酸(位置 189 和 191),赋予了对同域 毒液的抵抗性。这与大型非洲物种 不同,后者已经失去了其中一个赖氨酸,可能是因为它的快速生长超出了同域 物种的猎物大小范围。相比之下,两个亚洲物种 (小型)和 (大型)共享相同的正构位,表现出最高程度的抵抗性,归因于正构位中的三个赖氨酸残基。其中一个赖氨酸(在正构位 195)在这两个物种的最后共同祖先中进化,这可能反映了对来自同域α-神经毒性食蛇属(亚洲眼镜蛇)增加的捕食压力的适应性反应。然而,所有这些陆地 物种都比其他属的蟒蛇对神经毒素的敏感性低,因为它们在不同的捕食压力下进化:亚洲物种 作为新生儿和幼体是树栖的,然后迅速长到与同域 物种一样大的陆地成年体型,不再被视为猎物;而陆地澳大利亚物种 则占据了一个没有来自α-神经毒性捕食性蛇的选择压力的生态位。我们的研究结果强调了正选择在毒液抵抗进化中的重要性,并表明了一个涉及保守特征和二次进化的复杂进化历史。这项研究增进了我们对蟒蛇在充满毒液威胁的环境中生存的分子适应的理解,并提供了对毒蛇与其猎物之间持续共同进化的深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af9e/11053703/ea41fd8883c9/toxins-16-00176-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验