Suppr超能文献

评估多种结局风险预测的标准。

Criteria for evaluating risk prediction of multiple outcomes.

作者信息

Dudbridge Frank

机构信息

Department of Health Sciences, University of Leicester, Leicester, UK.

出版信息

Stat Methods Med Res. 2020 Dec;29(12):3492-3510. doi: 10.1177/0962280220929039. Epub 2020 Jun 29.

Abstract

Risk prediction models have been developed in many contexts to classify individuals according to a single outcome, such as risk of a disease. Emerging "-omic" biomarkers provide panels of features that can simultaneously predict multiple outcomes from a single biological sample, creating issues of multiplicity reminiscent of exploratory hypothesis testing. Here I propose definitions of some basic criteria for evaluating prediction models of multiple outcomes. I define calibration in the multivariate setting and then distinguish between outcome-wise and individual-wise prediction, and within the latter between joint and panel-wise prediction. I give examples such as screening and early detection in which different senses of prediction may be more appropriate. In each case I propose definitions of sensitivity, specificity, concordance, positive and negative predictive value and relative utility. I link the definitions through a multivariate probit model, showing that the accuracy of a multivariate prediction model can be summarised by its covariance with a liability vector. I illustrate the concepts on a biomarker panel for early detection of eight cancers, and on polygenic risk scores for six common diseases.

摘要

风险预测模型已在许多情况下得到开发,用于根据单一结果对个体进行分类,例如疾病风险。新兴的“组学”生物标志物提供了一系列特征,这些特征可以从单个生物样本中同时预测多个结果,从而产生了类似于探索性假设检验中的多重性问题。在此,我提出了一些用于评估多结果预测模型的基本标准的定义。我定义了多变量环境下的校准,然后区分了按结果预测和按个体预测,并在后者中区分了联合预测和面板预测。我给出了一些例子,如筛查和早期检测,其中不同的预测意义可能更合适。在每种情况下,我都提出了灵敏度、特异性、一致性、阳性和阴性预测值以及相对效用的定义。我通过多变量概率模型将这些定义联系起来,表明多变量预测模型的准确性可以通过其与责任向量的协方差来概括。我在用于早期检测八种癌症的生物标志物面板以及六种常见疾病的多基因风险评分上说明了这些概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/558a/7682512/46b715df3845/10.1177_0962280220929039-fig1.jpg

相似文献

1
Criteria for evaluating risk prediction of multiple outcomes.
Stat Methods Med Res. 2020 Dec;29(12):3492-3510. doi: 10.1177/0962280220929039. Epub 2020 Jun 29.
3
Utility of biomarkers in the prediction of oncologic outcome after radical cystectomy for squamous cell carcinoma.
J Urol. 2015 Feb;193(2):451-6. doi: 10.1016/j.juro.2014.08.109. Epub 2014 Sep 6.
5
Assessing the clinical utility of biomarkers in medicine.
Biomark Med. 2007 Oct;1(3):419-36. doi: 10.2217/17520363.1.3.419.
6
Common polygenic variation enhances risk prediction for Alzheimer's disease.
Brain. 2015 Dec;138(Pt 12):3673-84. doi: 10.1093/brain/awv268. Epub 2015 Oct 21.
8
10

引用本文的文献

2
A blood DNA methylation biomarker for predicting short-term risk of cardiovascular events.
Clin Epigenetics. 2022 Sep 29;14(1):121. doi: 10.1186/s13148-022-01341-4.
3
Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk stratification.
Nat Genet. 2022 Jan;54(1):30-39. doi: 10.1038/s41588-021-00961-5. Epub 2021 Dec 20.
4
Predicting correlated outcomes from molecular data.
Bioinformatics. 2021 Nov 5;37(21):3889-3895. doi: 10.1093/bioinformatics/btab576.
5
EA3: A softmax algorithm for evidence appraisal aggregation.
PLoS One. 2021 Jun 17;16(6):e0253057. doi: 10.1371/journal.pone.0253057. eCollection 2021.
6
Multivariate prediction of mixed, multilevel, sequential outcomes arising from in vitro fertilisation.
Diagn Progn Res. 2021 Jan 21;5(1):2. doi: 10.1186/s41512-020-00091-2.

本文引用的文献

1
Direct-to-consumer genetic testing.
BMJ. 2019 Oct 16;367:l5688. doi: 10.1136/bmj.l5688.
2
Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood.
Cell. 2019 Apr 18;177(3):587-596.e9. doi: 10.1016/j.cell.2019.03.028.
3
Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability.
Nat Commun. 2018 Dec 10;9(1):5271. doi: 10.1038/s41467-018-07691-z.
4
Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention.
J Am Coll Cardiol. 2018 Oct 16;72(16):1883-1893. doi: 10.1016/j.jacc.2018.07.079.
5
Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps.
Nat Genet. 2018 Nov;50(11):1505-1513. doi: 10.1038/s41588-018-0241-6. Epub 2018 Oct 8.
6
Accurate Genomic Prediction of Human Height.
Genetics. 2018 Oct;210(2):477-497. doi: 10.1534/genetics.118.301267. Epub 2018 Aug 27.
9
Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study.
Lancet. 2018 May 12;391(10133):1897-1907. doi: 10.1016/S0140-6736(18)30664-0. Epub 2018 May 4.
10
Epigenome-based cancer risk prediction: rationale, opportunities and challenges.
Nat Rev Clin Oncol. 2018 May;15(5):292-309. doi: 10.1038/nrclinonc.2018.30. Epub 2018 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验