Suppr超能文献

整合组学平台上的生物标志物:一种改善惰性和侵袭性前列腺癌患者分层的方法。

Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer.

机构信息

UCD School of Mathematics and Statistics, University College Dublin, Ireland.

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland.

出版信息

Mol Oncol. 2018 Sep;12(9):1513-1525. doi: 10.1002/1878-0261.12348. Epub 2018 Aug 7.

Abstract

Classifying indolent prostate cancer represents a significant clinical challenge. We investigated whether integrating data from different omic platforms could identify a biomarker panel with improved performance compared to individual platforms alone. DNA methylation, transcripts, protein and glycosylation biomarkers were assessed in a single cohort of patients treated by radical prostatectomy. Novel multiblock statistical data integration approaches were used to deal with missing data and modelled via stepwise multinomial logistic regression, or LASSO. After applying leave-one-out cross-validation to each model, the probabilistic predictions of disease type for each individual panel were aggregated to improve prediction accuracy using all available information for a given patient. Through assessment of three performance parameters of area under the curve (AUC) values, calibration and decision curve analysis, the study identified an integrated biomarker panel which predicts disease type with a high level of accuracy, with Multi AUC value of 0.91 (0.89, 0.94) and Ordinal C-Index (ORC) value of 0.94 (0.91, 0.96), which was significantly improved compared to the values for the clinical panel alone of 0.67 (0.62, 0.72) Multi AUC and 0.72 (0.67, 0.78) ORC. Biomarker integration across different omic platforms significantly improves prediction accuracy. We provide a novel multiplatform approach for the analysis, determination and performance assessment of novel panels which can be applied to other diseases. With further refinement and validation, this panel could form a tool to help inform appropriate treatment strategies impacting on patient outcome in early stage prostate cancer.

摘要

惰性前列腺癌的分类是一个重大的临床挑战。我们研究了整合来自不同组学平台的数据是否可以识别出一个生物标志物组合,其性能优于单个平台。在接受根治性前列腺切除术治疗的单一患者队列中评估了 DNA 甲基化、转录物、蛋白质和糖基化生物标志物。使用新颖的多块统计数据集成方法来处理缺失数据,并通过逐步多项逻辑回归或 LASSO 进行建模。在对每个模型进行留一交叉验证后,使用所有可用信息为每个个体面板聚合疾病类型的概率预测,以提高预测准确性。通过评估曲线下面积 (AUC) 值、校准和决策曲线分析的三个性能参数,该研究确定了一个集成生物标志物组合,该组合具有高精度预测疾病类型的能力,其 Multi AUC 值为 0.91(0.89,0.94),Ordinal C-Index(ORC)值为 0.94(0.91,0.96),与临床面板 alone 的 0.67(0.62,0.72)Multi AUC 和 0.72(0.67,0.78)ORC 值相比,有显著提高。不同组学平台的生物标志物整合显著提高了预测准确性。我们提供了一种新的多平台方法,用于分析、确定和评估可以应用于其他疾病的新面板,并具有进一步的改进和验证,该面板可以成为帮助告知早期前列腺癌患者适当治疗策略的工具,从而影响患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48cf/6120220/4bf3dae14d7a/MOL2-12-1513-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验