Department of Biostatistics, University of California Los Angeles, Charles E. Young Dr. South, Los Angeles, 90095, USA.
Apellis Pharmaceuticals, Inc., 100 5th Avenue, Waltham, 02451, USA.
BMC Med Res Methodol. 2020 Jun 29;20(1):170. doi: 10.1186/s12874-020-01032-9.
When data are collected subject to a detection limit, observations below the detection limit may be considered censored. In addition, the domain of such observations may be restricted; for example, values may be required to be non-negative.
We propose a method for estimating population mean and variance from censored observations that accounts for known domain restriction. The method finds maximum likelihood estimates assuming an underlying truncated normal distribution.
We show that our method, tcensReg, has lower bias, Type I error rates, and mean squared error than other methods commonly used for data with detection limits such as Tobit regression and single imputation under a range of simulation settings from mild to heavy censoring and truncation. We further demonstrate the consistency of the maximum likelihood estimators. We apply our method to analyze vision quality data collected from ophthalmology clinical trials comparing different types of intraocular lenses implanted during cataract surgery. All of the methods yield similar conclusions regarding non-inferiority, but estimates from the tcensReg method suggest that there may be greater mean differences and overall variability.
In the presence of detection limits, our new method tcensReg provides a way to incorporate known domain restrictions in dependent variables that substantially improves inferences.
当数据受到检测极限的限制时,低于检测极限的观测值可能被视为删失。此外,这些观测值的范围可能受到限制;例如,值可能需要是非负的。
我们提出了一种从受检测限制的观测值中估计总体均值和方差的方法,该方法考虑了已知的域限制。该方法假设潜在的截断正态分布,找到最大似然估计。
我们表明,在从轻度到重度删失和截断的一系列模拟设置下,我们的方法 tcensReg 比其他常用于具有检测限的数据的方法(如 Tobit 回归和单一插补)具有更低的偏差、I 型错误率和均方误差。我们进一步证明了最大似然估计量的一致性。我们将我们的方法应用于分析从眼科临床试验中收集的视觉质量数据,这些数据比较了白内障手术中植入的不同类型的人工晶状体。所有方法在非劣效性方面都得出了相似的结论,但 tcensReg 方法的估计表明,可能存在更大的均值差异和整体变异性。
在存在检测极限的情况下,我们的新方法 tcensReg 提供了一种在依赖变量中纳入已知域限制的方法,这大大改善了推断。