Herbrych J, Heverhagen J, Alvarez G, Daghofer M, Moreo A, Dagotto E
Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996;
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16226-16233. doi: 10.1073/pnas.2001141117. Epub 2020 Jun 29.
Competing interactions in quantum materials induce exotic states of matter such as frustrated magnets, an extensive field of research from both the theoretical and experimental perspectives. Here, we show that competing energy scales present in the low-dimensional orbital-selective Mott phase (OSMP) induce an exotic magnetic order, never reported before. Earlier neutron-scattering experiments on iron-based 123 ladder materials, where OSMP is relevant, already confirmed our previous theoretical prediction of block magnetism (magnetic order of the form [Formula: see text]). Now we argue that another phase can be stabilized in multiorbital Hubbard models, the block-spiral state. In this state, the magnetic islands form a spiral propagating through the chain but with the blocks maintaining their identity, namely rigidly rotating. The block-spiral state is stabilized without any apparent frustration, the common avenue to generate spiral arrangements in multiferroics. By examining the behavior of the electronic degrees of freedom, parity-breaking quasiparticles are revealed. Finally, a simple phenomenological model that accurately captures the macroscopic spin spiral arrangement is also introduced, and fingerprints for the neutron-scattering experimental detection are provided.
量子材料中的竞争相互作用会诱导出奇异的物质状态,如受挫磁体,这是一个从理论和实验角度来看都有着广泛研究的领域。在此,我们表明,低维轨道选择性莫特相(OSMP)中存在的竞争能量尺度会诱导出一种此前从未报道过的奇异磁有序。早期对与OSMP相关的铁基123梯子材料进行的中子散射实验,已经证实了我们之前关于块状磁性(形式为[公式:见原文]的磁有序)的理论预测。现在我们认为,在多轨道哈伯德模型中可以稳定存在另一种相,即块状螺旋态。在这种状态下,磁岛形成一个贯穿链传播的螺旋,但各块保持其自身特性,即进行刚性旋转。块状螺旋态在没有任何明显受挫的情况下得以稳定,而受挫是在多铁性材料中产生螺旋排列的常见途径。通过研究电子自由度的行为,发现了奇偶性破缺的准粒子。最后,还引入了一个能准确捕捉宏观自旋螺旋排列的简单唯象模型,并提供了用于中子散射实验检测的特征标识。