Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
J Chem Theory Comput. 2020 Aug 11;16(8):5264-5278. doi: 10.1021/acs.jctc.0c00374. Epub 2020 Jul 15.
Polarons are localized electronic states that occur in many semiconductors. Modeling polarons at the quantum or atomic scale is often performed using electronic structure methods such as density functional theory (DFT). A problem using DFT to model polarons is that self-interaction errors (SIEs) often result in delocalized electronic states rather than localized states. Methods such as DFT + or hybrid functionals can be used to overcome SIE, but these methods may still not form stable polarons. The initial geometries and wavefunctions strongly influence and determine how and if polarons may arise during electronic structure calculations. In this paper, we have assessed different strategies to efficiently obtain low-energy localized polarons in several semiconductors (TiO, m-HfO, and m-BiVO). These strategies involve distorting the initial geometry to create polaron-like geometries or generating initial wavefunctions that mimic polaronic states. We show that perturbing the crystal's structure to induce polaron formation (which we call the bond distortion method) is a very efficient approach to form stable polarons, requiring less computational time than other methods. In contrast, other methods that we assessed may not lead to stable polaron states or may require much greater time (up to four times more computational time). Having a reliable, efficient method to ensure polaron formation is crucial to modeling polarons. The results described herein will save wasted computational efforts and also enable efforts such as high-throughput simulation of polarons.
极化子是在许多半导体中出现的局域电子态。在量子或原子尺度上对极化子进行建模通常使用电子结构方法,如密度泛函理论(DFT)。使用 DFT 对极化子进行建模的一个问题是自相互作用误差(SIE)常常导致非局域电子态,而不是局域态。可以使用 DFT+ 或混合泛函等方法来克服 SIE,但这些方法可能仍然无法形成稳定的极化子。初始几何形状和波函数强烈影响并决定极化子是否可能在电子结构计算中出现。在本文中,我们评估了几种半导体(TiO、m-HfO 和 m-BiVO)中获得低能局域极化子的有效策略。这些策略涉及扭曲初始几何形状以创建类似极化子的几何形状或生成模拟极化子态的初始波函数。我们表明,通过扰动晶体结构来诱导极化子形成(我们称之为键扭曲方法)是形成稳定极化子的非常有效的方法,所需的计算时间比其他方法少。相比之下,我们评估的其他方法可能不会导致稳定的极化子态,或者可能需要更多的时间(最多多四倍的计算时间)。有一个可靠、高效的方法来确保极化子的形成对于极化子的建模至关重要。本文描述的结果将节省浪费的计算工作,还可以实现高效的高通量极化子模拟等工作。