IEEE Trans Cybern. 2022 Mar;52(3):1862-1871. doi: 10.1109/TCYB.2020.2995415. Epub 2022 Mar 11.
In this article, we propose a novel deep correlated joint network (DCJN) approach for 2-D image-based 3-D model retrieval. First, the proposed method can jointly learn two distinct deep neural networks, which are trained for individual modalities to learn two deep nonlinear transformations for visual feature extraction from the co-embedding feature space. Second, we propose the global loss function for the DCJN, consisting of a discriminative loss and a correlation loss. The discriminative loss aims to minimize the intraclass distance of the extracted features and maximize the interclass distance of such features to a large margin within each modality, while the correlation loss focuses on mitigating the distribution discrepancy across different modalities. Consequently, the proposed method can realize cross-modality feature extraction guided by the defined global loss function to benefit the similarity measure between 2-D images and 3-D models. For a comparison experiment, we contribute the current largest 2-D image-based 3-D model retrieval dataset. Moreover, the proposed method was further evaluated on three popular benchmarks, including the 3-D Shape Retrieval Contest 2014, 2016, and 2018 benchmarks. The extensive comparison experimental results demonstrate the superiority of this method over the state-of-the-art methods.
在本文中,我们提出了一种新颖的基于二维图像的三维模型检索的深度相关联合网络(DCJN)方法。首先,该方法可以联合学习两个不同的深度神经网络,这些网络分别针对单一模态进行训练,以便从共同嵌入特征空间中学习用于视觉特征提取的两个深度非线性变换。其次,我们提出了用于 DCJN 的全局损失函数,该函数由判别损失和相关损失组成。判别损失旨在最小化提取特征的类内距离,并最大化各模态特征的类间距离,以获得较大的间隔,而相关损失则侧重于减轻不同模态之间的分布差异。因此,该方法可以通过定义的全局损失函数实现跨模态特征提取,从而有利于二维图像和三维模型之间的相似性度量。为了进行对比实验,我们贡献了当前最大的基于二维图像的三维模型检索数据集。此外,我们还在三个流行的基准上进一步评估了所提出的方法,包括 2014 年、2016 年和 2018 年的三维形状检索竞赛基准。广泛的对比实验结果表明,该方法优于最先进的方法。