Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Switzerland.
Établissements Hospitaliers du Nord Vaudois Site de St Loup, St Loup, Switzerland.
Int J Antimicrob Agents. 2020 Aug;56(2):106068. doi: 10.1016/j.ijantimicag.2020.106068. Epub 2020 Jun 27.
A combination of targeted molecular methods and phenotypic drug-susceptibility testing is the most widely used approach to detect drug resistance in Mycobacterium tuberculosis isolates. We report the delay in the introduction of an efficient anti-tuberculous drug regimen because of a M. tuberculosis strain displaying a high level of resistance to isoniazid, in the absence of the common mutations associated with isoniazid-resistance, including katG mutations and inhA promoter mutations. Whole-genome sequencing (WGS) identified a large loss-of-function insertion (>1000 pb) at the end of katG in the isolate together with a -57C>T ahpC mutation, a resistance mechanism that would have remained undetected by a conventional molecular targeted approach. A retrospective search using publicly available WGS data of more than 1200 isoniazid-resistant isolates and a similar sized control dataset of isoniazid-susceptible isolates revealed that most (22/31) isoniazid-resistant, KatG loss-of-function mutants had an associated rare ahpC promoter mutation. In contrast, only 7 of 1411 isoniazid-susceptible strains carried a rare ahpC promoter mutation, including shared mutations with the 31 isoniazid-resistant KatG loss-of-function mutants. These results indicate that rare ahpC promoter mutations could be used as a proxy for investigating simultaneous KatG loss-of-function or missense mutations. In addition, WGS in routine diagnosis would improve drug susceptibility testing in M. tuberculosis clinical isolates and is an efficient tool for detecting resistance mechanisms undetected by conventional molecular methods.
联合使用靶向分子方法和表型药物敏感性测试是检测结核分枝杆菌分离株耐药性最广泛使用的方法。我们报告了一种有效的抗结核药物方案的引入延迟,原因是一种结核分枝杆菌菌株对异烟肼表现出高水平的耐药性,而缺乏与异烟肼耐药相关的常见突变,包括 katG 突变和 inhA 启动子突变。全基因组测序(WGS)在分离株的 katG 末端发现了一个大的功能丧失插入(>1000 pb),同时存在 -57C>T ahpC 突变,这是一种耐药机制,如果采用传统的分子靶向方法,这种机制将无法检测到。使用超过 1200 个异烟肼耐药分离株的公开可用 WGS 数据和类似大小的异烟肼敏感分离株的控制数据集进行回顾性搜索,结果表明,大多数(22/31)异烟肼耐药、KatG 功能丧失突变体与罕见的 ahpC 启动子突变相关。相比之下,只有 1411 个异烟肼敏感株中的 7 个携带罕见的 ahpC 启动子突变,包括与 31 个异烟肼耐药 KatG 功能丧失突变体共享的突变。这些结果表明,罕见的 ahpC 启动子突变可以用作同时调查 KatG 功能丧失或错义突变的替代物。此外,常规诊断中的 WGS 可改善结核分枝杆菌临床分离株的药物敏感性测试,是检测传统分子方法无法检测到的耐药机制的有效工具。