Suppr超能文献

基于密集多路径上下文生成对抗网络的非对比 CT 扫描自动脑卒中病灶分割。

Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network.

机构信息

Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, T2N 2T9 Canada.

出版信息

Phys Med Biol. 2020 Nov 5;65(21):215013. doi: 10.1088/1361-6560/aba166.

Abstract

Stroke lesion volume is a key radiologic measurement in assessing prognosis of acute ischemic stroke (AIS) patients. The aim of this paper is to develop an automated segmentation method for accurately segmenting follow-up ischemic and hemorrhagic lesion from multislice non-contrast CT (NCCT) volumes of AIS patients. This paper proposes a 2D dense multi-path contextual generative adversarial network (MPC-GAN) where a dense multi-path 2D U-Net is utilized as the generator and a discriminator network is applied to regularize the generator. Contextual information (i.e. bilateral intensity difference, distance map and lesion location probability) are input into the generator and discriminator. The proposed method is validated separately on follow-up NCCT volumes of 60 patients with ischemic infarcts and NCCT volumes of 70 patients with hemorrhages. Quantitative results demonstrated that the proposed MPC-GAN method obtained a Dice coefficient (DC) of 70.6% for ischemic infarct segmentation and a DC of 76.5% for hemorrhage segmentation compared with manual segmented lesions, outperforming several benchmark methods. Additional volumetric analyses demonstrated that the MPC-GAN segmented lesion volume correlated well with manual measurements (Pearson correlation coefficients were 0.926 and 0.927 for ischemic infarcts and hemorrhages, respectively). The proposed MPC-GAN method can accurately segment ischemic infarcts and hemorrhages from NCCT volumes of AIS patients.

摘要

脑梗死灶体积是评估急性缺血性脑卒中(AIS)患者预后的关键影像学测量指标。本文旨在开发一种自动分割方法,以便从 AIS 患者的多层非对比 CT(NCCT)容积中准确分割随访的缺血性和出血性病变。本文提出了一种二维密集多路径上下文生成对抗网络(MPC-GAN),其中密集多路径二维 U-Net 用作生成器,鉴别器网络用于正则化生成器。上下文信息(即双侧强度差、距离图和病变位置概率)被输入到生成器和鉴别器中。该方法分别在 60 例缺血性梗死的随访 NCCT 容积和 70 例出血性 NCCT 容积上进行了验证。定量结果表明,与手动分割病变相比,所提出的 MPC-GAN 方法在缺血性梗死分割中获得了 70.6%的 Dice 系数(DC),在出血分割中获得了 76.5%的 DC,优于几种基准方法。额外的体积分析表明,MPC-GAN 分割的病变体积与手动测量值高度相关(缺血性梗死和出血的 Pearson 相关系数分别为 0.926 和 0.927)。所提出的 MPC-GAN 方法可以从 AIS 患者的 NCCT 容积中准确分割缺血性梗死和出血性病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验