Département des sciences animales, Université Laval, Québec, QC, G1V 0A6Canada.
Agriculture et Agroalimentaire Canada, Sherbrooke, QC, J1M 1Z3Canada.
Animal. 2020 Aug;14(S2):s313-s322. doi: 10.1017/S1751731120001627. Epub 2020 Jul 1.
Phosphorus (P) is an essential nutrient in livestock feed but can pollute waterways. In order for pig production to become less of a threat to the environment, excreta must contain as little P as possible or be efficiently used by plants. This must be achieved without decreasing the livestock performance. Phosphorus and calcium (Ca) deposition in the bones of growing pigs must be optimised without affecting the muscle gain. This requires precision feeding based on cutting-edge techniques of diet formulation throughout the animal growth phase. Modelling and data mining have become important tools in this quest. In this study, a mechanistic model taking into account the distribution of P between bone and soft tissues was compared to the established factorial models (INRA (Jondreville and Dourmad, 2005) and NRC (National Research Council, 2012)) that predict P (apparent total tract digestible, ATTD-P; or standardised total tract digestible, STTD-P) and Ca (total and STTD) requirements as a function of BW and protein deposition. The requirements for different bone mineralisation scenarios, namely, 100% and 85% of the genetic potential, were compared with these two models. Sobol indices were used to estimate the relative impact of growth-related parameters on mineral requirements at 30, 60 and 120 kg of BW. The INRA showed the highest value of ATTD-P requirement between 29 and 103 kg of BW (6%) and lower for lighter and higher BW. Similarly, the model for 85% bone mineralisation showed lower STTD-P requirement than NRC between 29 and 93 kg of BW (7%) and higher for lighter and higher BW. Contrary to other models, the Ca requirement of the proposed model is not fixed in relation to P. It increases from 95 kg of BW while the others decrease. The INRA showed the highest Ca requirements. The model Ca requirements for 100% bone mineralisation are higher than NRC from 20 to 38 kg of BW similar until 70 kg of BW and then higher again. For 85% objective, the model showed lower Ca requirements from 25 to 82 kg of BW and higher for lighter and higher BW. The potential Ca deposition in bones is the most sensitive parameter (84% to 100% of the variance) of both ATTD-P and Ca at 30, 60 and 120 kg. The second most sensitive parameter is the protein deposition, explaining 1% to 15% of the ATTD-P variance. Studies such as this one will help to usher in a new era of sustainable and eco-friendly livestock production.
磷(P)是家畜饲料中的一种必需养分,但会污染水道。为了减少养猪业对环境的威胁,排泄物中的磷含量必须尽可能低,或者被植物有效利用。这必须在不降低牲畜性能的情况下实现。必须优化生长猪骨骼中的磷和钙(Ca)沉积,而不影响肌肉生长。这需要基于整个动物生长阶段的饮食配方的尖端技术进行精确喂养。建模和数据挖掘已成为这项研究的重要工具。在这项研究中,与既定的因子模型(INRA(Jondreville 和 Dourmad,2005)和 NRC(美国国家研究委员会,2012))相比,考虑到 P 在骨骼和软组织之间分布的机制模型被用来预测 P(表观全肠道可消化率,ATTD-P;或标准化全肠道可消化率,STTD-P)和 Ca(总和 STTD)需求作为 BW 和蛋白质沉积的函数。比较了不同骨矿化情况(100%和 85%的遗传潜力)的需求与这两个模型。Sobol 指数用于估计与 30、60 和 120 kg BW 相关的生长相关参数对矿物质需求的相对影响。INRA 在 29 至 103 kg BW 之间显示出最高的 ATTD-P 需求值(6%),而在较轻和较高 BW 时则较低。同样,85%骨矿化模型显示出比 NRC 更低的 STTD-P 需求,从 29 至 93 kg BW(7%),而在较轻和较高 BW 时则较高。与其他模型不同,所提出模型的 Ca 需求与其 P 无关。它从 95 kg BW 开始增加,而其他模型则减少。INRA 显示出最高的 Ca 需求。100%骨矿化模型的 Ca 需求从 20 至 38 kg BW 高于 NRC,相似至 70 kg BW,然后再次升高。对于 85%的目标,模型显示出从 25 至 82 kg BW 的较低的 Ca 需求,而在较轻和较高 BW 时则较高。在 30、60 和 120 kg 时,骨骼中潜在的 Ca 沉积是 ATTD-P 和 Ca 最敏感的参数(84%至 100%的方差)。第二个最敏感的参数是蛋白质沉积,解释了 ATTD-P 方差的 1%至 15%。这样的研究将有助于迎来可持续和环保的畜牧业生产的新时代。