Suppr超能文献

气相沉积玻璃凸显了密度在光稳定性中的作用。

Vapor-Deposited Glasses Highlight the Role of Density in Photostability.

作者信息

Salerno K Michael, Lenhart Joseph L, de Pablo Juan J, Sirk Timothy W

机构信息

Polymers Branch, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States.

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Phys Chem B. 2020 Jul 16;124(28):6112-6120. doi: 10.1021/acs.jpcb.0c03579. Epub 2020 Jul 1.

Abstract

Photoresponsive molecules can be integrated into glassy materials to probe the local environment and invoke responsive changes in polymer behavior. For example, recent experiments and simulations have studied increased stability in vapor-deposited glasses by examining the photoisomerization rate of a probe molecule. At the theoretical level, past work relied on coarse-grained simulations to explain the role of photoisomerization on glass behavior. In order to effectively exploit these molecular probes, an ability to quantify how the local environment influences the photoisomerization rate is needed. In this work, we present all-atom molecular-dynamics (MD) simulations of molecular glasses of photoresponsive azobenzene (AB) molecules. The stability of these in-silico samples is probed using photoisomerization, where AB molecules can undergo trans → cis transition upon light exposure. Vapor-deposited and bulk-cooled glasses of AB are simulated using a classical dihedral-switching potential developed by Böckmann et al. ( 745-754) to model the photoisomerization process. The MD simulations include thousands of molecules and run for tens of nanoseconds. These size and time scales allow us to explore the broad distribution of photoisomerization wait times, which yields two results. First, the wait-time distributions for both physical vapor deposition and bulk-cooled glasses depend strongly on sample and local density, showing that density or local packing is a primary factor in glass stability against photoisomerization and the experimentally measured photoresponse. Second, the distribution follows a power-law with exponent ≈ 1.25-1.3 that extends to longer times with increasing density. The power-law distribution suggests a connection with previous experiments that related barriers to photoisomerization with an effective photoisomerization temperature.

摘要

光响应分子可以整合到玻璃材料中,以探测局部环境并引发聚合物行为的响应变化。例如,最近的实验和模拟通过研究探针分子的光异构化速率,探讨了气相沉积玻璃中稳定性的提高。在理论层面,过去的工作依赖于粗粒度模拟来解释光异构化对玻璃行为的作用。为了有效利用这些分子探针,需要具备量化局部环境如何影响光异构化速率的能力。在这项工作中,我们展示了光响应偶氮苯(AB)分子的分子玻璃的全原子分子动力学(MD)模拟。利用光异构化来探测这些计算机模拟样品的稳定性,其中AB分子在光照下可发生反式→顺式转变。使用Böckmann等人开发的经典二面角切换势(745 - 754)模拟AB的气相沉积玻璃和整体冷却玻璃,以模拟光异构化过程。MD模拟包含数千个分子,并运行数十纳秒。这些尺寸和时间尺度使我们能够探索光异构化等待时间的广泛分布,从而得出两个结果。首先,物理气相沉积玻璃和整体冷却玻璃的等待时间分布都强烈依赖于样品和局部密度,这表明密度或局部堆积是玻璃抵抗光异构化和实验测量光响应稳定性的主要因素。其次,该分布遵循幂律,指数约为1.25 - 1.3,随着密度增加,分布延伸到更长时间。幂律分布表明与先前的实验存在联系,这些实验将光异构化的势垒与有效光异构化温度相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验